| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/MatrixFunctions> |
| |
| // Variant of VERIFY_IS_APPROX which uses absolute error instead of |
| // relative error. |
| #define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b)) |
| |
| template<typename Type1, typename Type2> |
| inline bool test_isApprox_abs(const Type1& a, const Type2& b) |
| { |
| return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all(); |
| } |
| |
| |
| // Returns a matrix with eigenvalues clustered around 0, 1 and 2. |
| template<typename MatrixType> |
| MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| MatrixType diag = MatrixType::Zero(size, size); |
| for (Index i = 0; i < size; ++i) { |
| diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2))) |
| + internal::random<Scalar>() * Scalar(RealScalar(0.01)); |
| } |
| MatrixType A = MatrixType::Random(size, size); |
| HouseholderQR<MatrixType> QRofA(A); |
| return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
| } |
| |
| template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
| struct randomMatrixWithImagEivals |
| { |
| // Returns a matrix with eigenvalues clustered around 0 and +/- i. |
| static MatrixType run(const typename MatrixType::Index size); |
| }; |
| |
| // Partial specialization for real matrices |
| template<typename MatrixType> |
| struct randomMatrixWithImagEivals<MatrixType, 0> |
| { |
| static MatrixType run(const typename MatrixType::Index size) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| MatrixType diag = MatrixType::Zero(size, size); |
| Index i = 0; |
| while (i < size) { |
| Index randomInt = internal::random<Index>(-1, 1); |
| if (randomInt == 0 || i == size-1) { |
| diag(i, i) = internal::random<Scalar>() * Scalar(0.01); |
| ++i; |
| } else { |
| Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01); |
| diag(i, i+1) = alpha; |
| diag(i+1, i) = -alpha; |
| i += 2; |
| } |
| } |
| MatrixType A = MatrixType::Random(size, size); |
| HouseholderQR<MatrixType> QRofA(A); |
| return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
| } |
| }; |
| |
| // Partial specialization for complex matrices |
| template<typename MatrixType> |
| struct randomMatrixWithImagEivals<MatrixType, 1> |
| { |
| static MatrixType run(const typename MatrixType::Index size) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| const Scalar imagUnit(0, 1); |
| MatrixType diag = MatrixType::Zero(size, size); |
| for (Index i = 0; i < size; ++i) { |
| diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit |
| + internal::random<Scalar>() * Scalar(RealScalar(0.01)); |
| } |
| MatrixType A = MatrixType::Random(size, size); |
| HouseholderQR<MatrixType> QRofA(A); |
| return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
| } |
| }; |
| |
| |
| template<typename MatrixType> |
| void testMatrixExponential(const MatrixType& A) |
| { |
| typedef typename internal::traits<MatrixType>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef std::complex<RealScalar> ComplexScalar; |
| |
| VERIFY_IS_APPROX(A.exp(), A.matrixFunction(StdStemFunctions<ComplexScalar>::exp)); |
| } |
| |
| template<typename MatrixType> |
| void testMatrixLogarithm(const MatrixType& A) |
| { |
| typedef typename internal::traits<MatrixType>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef std::complex<RealScalar> ComplexScalar; |
| |
| MatrixType scaledA; |
| RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff(); |
| if (maxImagPartOfSpectrum >= 0.9 * M_PI) |
| scaledA = A * 0.9 * M_PI / maxImagPartOfSpectrum; |
| else |
| scaledA = A; |
| |
| // identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X |
| MatrixType expA = scaledA.exp(); |
| MatrixType logExpA = expA.log(); |
| VERIFY_IS_APPROX(logExpA, scaledA); |
| } |
| |
| template<typename MatrixType> |
| void testHyperbolicFunctions(const MatrixType& A) |
| { |
| // Need to use absolute error because of possible cancellation when |
| // adding/subtracting expA and expmA. |
| VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2); |
| VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2); |
| } |
| |
| template<typename MatrixType> |
| void testGonioFunctions(const MatrixType& A) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef std::complex<RealScalar> ComplexScalar; |
| typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime, |
| MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix; |
| |
| ComplexScalar imagUnit(0,1); |
| ComplexScalar two(2,0); |
| |
| ComplexMatrix Ac = A.template cast<ComplexScalar>(); |
| |
| ComplexMatrix exp_iA = (imagUnit * Ac).exp(); |
| ComplexMatrix exp_miA = (-imagUnit * Ac).exp(); |
| |
| ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>(); |
| VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit)); |
| |
| ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>(); |
| VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2); |
| } |
| |
| template<typename MatrixType> |
| void testMatrix(const MatrixType& A) |
| { |
| testMatrixExponential(A); |
| testMatrixLogarithm(A); |
| testHyperbolicFunctions(A); |
| testGonioFunctions(A); |
| } |
| |
| template<typename MatrixType> |
| void testMatrixType(const MatrixType& m) |
| { |
| // Matrices with clustered eigenvalue lead to different code paths |
| // in MatrixFunction.h and are thus useful for testing. |
| typedef typename MatrixType::Index Index; |
| |
| const Index size = m.rows(); |
| for (int i = 0; i < g_repeat; i++) { |
| testMatrix(MatrixType::Random(size, size).eval()); |
| testMatrix(randomMatrixWithRealEivals<MatrixType>(size)); |
| testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size)); |
| } |
| } |
| |
| void test_matrix_function() |
| { |
| CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>())); |
| CALL_SUBTEST_2(testMatrixType(Matrix3cf())); |
| CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8))); |
| CALL_SUBTEST_4(testMatrixType(Matrix2d())); |
| CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>())); |
| CALL_SUBTEST_6(testMatrixType(Matrix4cd())); |
| CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13))); |
| } |