| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2007 Julien Pommier |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| /* The sin and cos and functions of this file come from |
| * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ |
| */ |
| |
| #ifndef EIGEN_MATH_FUNCTIONS_SSE_H |
| #define EIGEN_MATH_FUNCTIONS_SSE_H |
| |
| #include "../../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f plog<Packet4f>(const Packet4f& _x) { |
| return plog_float(_x); |
| } |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet2d plog<Packet2d>(const Packet2d& _x) { |
| return plog_double(_x); |
| } |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f plog2<Packet4f>(const Packet4f& _x) { |
| return plog2_float(_x); |
| } |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet2d plog2<Packet2d>(const Packet2d& _x) { |
| return plog2_double(_x); |
| } |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f plog1p<Packet4f>(const Packet4f& _x) { |
| return generic_plog1p(_x); |
| } |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f pexpm1<Packet4f>(const Packet4f& _x) { |
| return generic_expm1(_x); |
| } |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f pexp<Packet4f>(const Packet4f& _x) |
| { |
| return pexp_float(_x); |
| } |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet2d pexp<Packet2d>(const Packet2d& x) |
| { |
| return pexp_double(x); |
| } |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f psin<Packet4f>(const Packet4f& _x) |
| { |
| return psin_float(_x); |
| } |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f pcos<Packet4f>(const Packet4f& _x) |
| { |
| return pcos_float(_x); |
| } |
| |
| #if EIGEN_FAST_MATH |
| |
| // Functions for sqrt. |
| // The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step |
| // of Newton's method, at a cost of 1-2 bits of precision as opposed to the |
| // exact solution. It does not handle +inf, or denormalized numbers correctly. |
| // The main advantage of this approach is not just speed, but also the fact that |
| // it can be inlined and pipelined with other computations, further reducing its |
| // effective latency. This is similar to Quake3's fast inverse square root. |
| // For detail see here: http://www.beyond3d.com/content/articles/8/ |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f psqrt<Packet4f>(const Packet4f& _x) |
| { |
| Packet4f minus_half_x = pmul(_x, pset1<Packet4f>(-0.5f)); |
| Packet4f denormal_mask = pandnot( |
| pcmp_lt(_x, pset1<Packet4f>((std::numeric_limits<float>::min)())), |
| pcmp_lt(_x, pzero(_x))); |
| |
| // Compute approximate reciprocal sqrt. |
| Packet4f x = _mm_rsqrt_ps(_x); |
| // Do a single step of Newton's iteration. |
| x = pmul(x, pmadd(minus_half_x, pmul(x,x), pset1<Packet4f>(1.5f))); |
| // Flush results for denormals to zero. |
| return pandnot(pmul(_x,x), denormal_mask); |
| } |
| |
| #else |
| |
| template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); } |
| |
| #endif |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); } |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet16b psqrt<Packet16b>(const Packet16b& x) { return x; } |
| |
| #if EIGEN_FAST_MATH |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f prsqrt<Packet4f>(const Packet4f& _x) { |
| _EIGEN_DECLARE_CONST_Packet4f(one_point_five, 1.5f); |
| _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5f); |
| _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inf, 0x7f800000u); |
| _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(flt_min, 0x00800000u); |
| |
| Packet4f neg_half = pmul(_x, p4f_minus_half); |
| |
| // Identity infinite, zero, negative and denormal arguments. |
| Packet4f lt_min_mask = _mm_cmplt_ps(_x, p4f_flt_min); |
| Packet4f inf_mask = _mm_cmpeq_ps(_x, p4f_inf); |
| Packet4f not_normal_finite_mask = _mm_or_ps(lt_min_mask, inf_mask); |
| |
| // Compute an approximate result using the rsqrt intrinsic. |
| Packet4f y_approx = _mm_rsqrt_ps(_x); |
| |
| // Do a single step of Newton-Raphson iteration to improve the approximation. |
| // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n). |
| // It is essential to evaluate the inner term like this because forming |
| // y_n^2 may over- or underflow. |
| Packet4f y_newton = pmul( |
| y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p4f_one_point_five)); |
| |
| // Select the result of the Newton-Raphson step for positive normal arguments. |
| // For other arguments, choose the output of the intrinsic. This will |
| // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if |
| // x is zero or a positive denormalized float (equivalent to flushing positive |
| // denormalized inputs to zero). |
| return pselect<Packet4f>(not_normal_finite_mask, y_approx, y_newton); |
| } |
| |
| #else |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet4f prsqrt<Packet4f>(const Packet4f& x) { |
| // Unfortunately we can't use the much faster mm_rsqrt_ps since it only provides an approximation. |
| return _mm_div_ps(pset1<Packet4f>(1.0f), _mm_sqrt_ps(x)); |
| } |
| |
| #endif |
| |
| template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
| Packet2d prsqrt<Packet2d>(const Packet2d& x) { |
| return _mm_div_pd(pset1<Packet2d>(1.0), _mm_sqrt_pd(x)); |
| } |
| |
| // Hyperbolic Tangent function. |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f |
| ptanh<Packet4f>(const Packet4f& x) { |
| return internal::generic_fast_tanh_float(x); |
| } |
| |
| } // end namespace internal |
| |
| namespace numext { |
| |
| template<> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| float sqrt(const float &x) |
| { |
| return internal::pfirst(internal::Packet4f(_mm_sqrt_ss(_mm_set_ss(x)))); |
| } |
| |
| template<> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| double sqrt(const double &x) |
| { |
| #if EIGEN_COMP_GNUC_STRICT |
| // This works around a GCC bug generating poor code for _mm_sqrt_pd |
| // See https://gitlab.com/libeigen/eigen/commit/8dca9f97e38970 |
| return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x)))); |
| #else |
| return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x)))); |
| #endif |
| } |
| |
| } // end namespace numex |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATH_FUNCTIONS_SSE_H |