| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_JACOBI_H | 
 | #define EIGEN_JACOBI_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /** \ingroup Jacobi_Module | 
 |   * \jacobi_module | 
 |   * \class JacobiRotation | 
 |   * \brief Rotation given by a cosine-sine pair. | 
 |   * | 
 |   * This class represents a Jacobi or Givens rotation. | 
 |   * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by | 
 |   * its cosine \c c and sine \c s as follow: | 
 |   * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s  & \overline c \end{array} \right ) \f$ | 
 |   * | 
 |   * You can apply the respective counter-clockwise rotation to a column vector \c v by | 
 |   * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: | 
 |   * \code | 
 |   * v.applyOnTheLeft(J.adjoint()); | 
 |   * \endcode | 
 |   * | 
 |   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
 |   */ | 
 | template<typename Scalar> class JacobiRotation | 
 | { | 
 |   public: | 
 |     typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |     /** Default constructor without any initialization. */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     JacobiRotation() {} | 
 |  | 
 |     /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} | 
 |  | 
 |     EIGEN_DEVICE_FUNC Scalar& c() { return m_c; } | 
 |     EIGEN_DEVICE_FUNC Scalar c() const { return m_c; } | 
 |     EIGEN_DEVICE_FUNC Scalar& s() { return m_s; } | 
 |     EIGEN_DEVICE_FUNC Scalar s() const { return m_s; } | 
 |  | 
 |     /** Concatenates two planar rotation */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     JacobiRotation operator*(const JacobiRotation& other) | 
 |     { | 
 |       using numext::conj; | 
 |       return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s, | 
 |                             conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c))); | 
 |     } | 
 |  | 
 |     /** Returns the transposed transformation */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); } | 
 |  | 
 |     /** Returns the adjoint transformation */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); } | 
 |  | 
 |     template<typename Derived> | 
 |     EIGEN_DEVICE_FUNC | 
 |     bool makeJacobi(const MatrixBase<Derived>&, Index p, Index q); | 
 |     EIGEN_DEVICE_FUNC | 
 |     bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z); | 
 |  | 
 |     EIGEN_DEVICE_FUNC | 
 |     void makeGivens(const Scalar& p, const Scalar& q, Scalar* r=0); | 
 |  | 
 |   protected: | 
 |     EIGEN_DEVICE_FUNC | 
 |     void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type); | 
 |     EIGEN_DEVICE_FUNC | 
 |     void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type); | 
 |  | 
 |     Scalar m_c, m_s; | 
 | }; | 
 |  | 
 | /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix | 
 |   * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ | 
 |   * | 
 |   * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
 |   */ | 
 | template<typename Scalar> | 
 | EIGEN_DEVICE_FUNC | 
 | bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z) | 
 | { | 
 |   using std::sqrt; | 
 |   using std::abs; | 
 |  | 
 |   RealScalar deno = RealScalar(2)*abs(y); | 
 |   if(deno < (std::numeric_limits<RealScalar>::min)()) | 
 |   { | 
 |     m_c = Scalar(1); | 
 |     m_s = Scalar(0); | 
 |     return false; | 
 |   } | 
 |   else | 
 |   { | 
 |     RealScalar tau = (x-z)/deno; | 
 |     RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); | 
 |     RealScalar t; | 
 |     if(tau>RealScalar(0)) | 
 |     { | 
 |       t = RealScalar(1) / (tau + w); | 
 |     } | 
 |     else | 
 |     { | 
 |       t = RealScalar(1) / (tau - w); | 
 |     } | 
 |     RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); | 
 |     RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1)); | 
 |     m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n; | 
 |     m_c = n; | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix | 
 |   * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields | 
 |   * a diagonal matrix \f$ A = J^* B J \f$ | 
 |   * | 
 |   * Example: \include Jacobi_makeJacobi.cpp | 
 |   * Output: \verbinclude Jacobi_makeJacobi.out | 
 |   * | 
 |   * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
 |   */ | 
 | template<typename Scalar> | 
 | template<typename Derived> | 
 | EIGEN_DEVICE_FUNC | 
 | inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, Index p, Index q) | 
 | { | 
 |   return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q))); | 
 | } | 
 |  | 
 | /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector | 
 |   * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: | 
 |   * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. | 
 |   * | 
 |   * The value of \a r is returned if \a r is not null (the default is null). | 
 |   * Also note that G is built such that the cosine is always real. | 
 |   * | 
 |   * Example: \include Jacobi_makeGivens.cpp | 
 |   * Output: \verbinclude Jacobi_makeGivens.out | 
 |   * | 
 |   * This function implements the continuous Givens rotation generation algorithm | 
 |   * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. | 
 |   * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. | 
 |   * | 
 |   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
 |   */ | 
 | template<typename Scalar> | 
 | EIGEN_DEVICE_FUNC | 
 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r) | 
 | { | 
 |   makeGivens(p, q, r, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type()); | 
 | } | 
 |  | 
 |  | 
 | // specialization for complexes | 
 | template<typename Scalar> | 
 | EIGEN_DEVICE_FUNC | 
 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) | 
 | { | 
 |   using std::sqrt; | 
 |   using std::abs; | 
 |   using numext::conj; | 
 |  | 
 |   if(q==Scalar(0)) | 
 |   { | 
 |     m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1); | 
 |     m_s = 0; | 
 |     if(r) *r = m_c * p; | 
 |   } | 
 |   else if(p==Scalar(0)) | 
 |   { | 
 |     m_c = 0; | 
 |     m_s = -q/abs(q); | 
 |     if(r) *r = abs(q); | 
 |   } | 
 |   else | 
 |   { | 
 |     RealScalar p1 = numext::norm1(p); | 
 |     RealScalar q1 = numext::norm1(q); | 
 |     if(p1>=q1) | 
 |     { | 
 |       Scalar ps = p / p1; | 
 |       RealScalar p2 = numext::abs2(ps); | 
 |       Scalar qs = q / p1; | 
 |       RealScalar q2 = numext::abs2(qs); | 
 |  | 
 |       RealScalar u = sqrt(RealScalar(1) + q2/p2); | 
 |       if(numext::real(p)<RealScalar(0)) | 
 |         u = -u; | 
 |  | 
 |       m_c = Scalar(1)/u; | 
 |       m_s = -qs*conj(ps)*(m_c/p2); | 
 |       if(r) *r = p * u; | 
 |     } | 
 |     else | 
 |     { | 
 |       Scalar ps = p / q1; | 
 |       RealScalar p2 = numext::abs2(ps); | 
 |       Scalar qs = q / q1; | 
 |       RealScalar q2 = numext::abs2(qs); | 
 |  | 
 |       RealScalar u = q1 * sqrt(p2 + q2); | 
 |       if(numext::real(p)<RealScalar(0)) | 
 |         u = -u; | 
 |  | 
 |       p1 = abs(p); | 
 |       ps = p/p1; | 
 |       m_c = p1/u; | 
 |       m_s = -conj(ps) * (q/u); | 
 |       if(r) *r = ps * u; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // specialization for reals | 
 | template<typename Scalar> | 
 | EIGEN_DEVICE_FUNC | 
 | void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) | 
 | { | 
 |   using std::sqrt; | 
 |   using std::abs; | 
 |   if(q==Scalar(0)) | 
 |   { | 
 |     m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1); | 
 |     m_s = Scalar(0); | 
 |     if(r) *r = abs(p); | 
 |   } | 
 |   else if(p==Scalar(0)) | 
 |   { | 
 |     m_c = Scalar(0); | 
 |     m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1); | 
 |     if(r) *r = abs(q); | 
 |   } | 
 |   else if(abs(p) > abs(q)) | 
 |   { | 
 |     Scalar t = q/p; | 
 |     Scalar u = sqrt(Scalar(1) + numext::abs2(t)); | 
 |     if(p<Scalar(0)) | 
 |       u = -u; | 
 |     m_c = Scalar(1)/u; | 
 |     m_s = -t * m_c; | 
 |     if(r) *r = p * u; | 
 |   } | 
 |   else | 
 |   { | 
 |     Scalar t = p/q; | 
 |     Scalar u = sqrt(Scalar(1) + numext::abs2(t)); | 
 |     if(q<Scalar(0)) | 
 |       u = -u; | 
 |     m_s = -Scalar(1)/u; | 
 |     m_c = -t * m_s; | 
 |     if(r) *r = q * u; | 
 |   } | 
 |  | 
 | } | 
 |  | 
 | /**************************************************************************************** | 
 | *   Implementation of MatrixBase methods | 
 | ****************************************************************************************/ | 
 |  | 
 | namespace internal { | 
 | /** \jacobi_module | 
 |   * Applies the clock wise 2D rotation \a j to the set of 2D vectors of coordinates \a x and \a y: | 
 |   * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right )  =  J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$ | 
 |   * | 
 |   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
 |   */ | 
 | template<typename VectorX, typename VectorY, typename OtherScalar> | 
 | EIGEN_DEVICE_FUNC | 
 | void apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j); | 
 | } | 
 |  | 
 | /** \jacobi_module | 
 |   * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, | 
 |   * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. | 
 |   * | 
 |   * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() | 
 |   */ | 
 | template<typename Derived> | 
 | template<typename OtherScalar> | 
 | EIGEN_DEVICE_FUNC | 
 | inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j) | 
 | { | 
 |   RowXpr x(this->row(p)); | 
 |   RowXpr y(this->row(q)); | 
 |   internal::apply_rotation_in_the_plane(x, y, j); | 
 | } | 
 |  | 
 | /** \ingroup Jacobi_Module | 
 |   * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J | 
 |   * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. | 
 |   * | 
 |   * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() | 
 |   */ | 
 | template<typename Derived> | 
 | template<typename OtherScalar> | 
 | EIGEN_DEVICE_FUNC | 
 | inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j) | 
 | { | 
 |   ColXpr x(this->col(p)); | 
 |   ColXpr y(this->col(q)); | 
 |   internal::apply_rotation_in_the_plane(x, y, j.transpose()); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename Scalar, typename OtherScalar, | 
 |          int SizeAtCompileTime, int MinAlignment, bool Vectorizable> | 
 | struct apply_rotation_in_the_plane_selector | 
 | { | 
 |   static EIGEN_DEVICE_FUNC | 
 |   inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) | 
 |   { | 
 |     for(Index i=0; i<size; ++i) | 
 |     { | 
 |       Scalar xi = *x; | 
 |       Scalar yi = *y; | 
 |       *x =  c * xi + numext::conj(s) * yi; | 
 |       *y = -s * xi + numext::conj(c) * yi; | 
 |       x += incrx; | 
 |       y += incry; | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Scalar, typename OtherScalar, | 
 |          int SizeAtCompileTime, int MinAlignment> | 
 | struct apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,true /* vectorizable */> | 
 | { | 
 |   static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) | 
 |   { | 
 |     enum { | 
 |       PacketSize = packet_traits<Scalar>::size, | 
 |       OtherPacketSize = packet_traits<OtherScalar>::size | 
 |     }; | 
 |     typedef typename packet_traits<Scalar>::type Packet; | 
 |     typedef typename packet_traits<OtherScalar>::type OtherPacket; | 
 |  | 
 |     /*** dynamic-size vectorized paths ***/ | 
 |     if(SizeAtCompileTime == Dynamic && ((incrx==1 && incry==1) || PacketSize == 1)) | 
 |     { | 
 |       // both vectors are sequentially stored in memory => vectorization | 
 |       enum { Peeling = 2 }; | 
 |  | 
 |       Index alignedStart = internal::first_default_aligned(y, size); | 
 |       Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; | 
 |  | 
 |       const OtherPacket pc = pset1<OtherPacket>(c); | 
 |       const OtherPacket ps = pset1<OtherPacket>(s); | 
 |       conj_helper<OtherPacket,Packet,NumTraits<OtherScalar>::IsComplex,false> pcj; | 
 |       conj_helper<OtherPacket,Packet,false,false> pm; | 
 |  | 
 |       for(Index i=0; i<alignedStart; ++i) | 
 |       { | 
 |         Scalar xi = x[i]; | 
 |         Scalar yi = y[i]; | 
 |         x[i] =  c * xi + numext::conj(s) * yi; | 
 |         y[i] = -s * xi + numext::conj(c) * yi; | 
 |       } | 
 |  | 
 |       Scalar* EIGEN_RESTRICT px = x + alignedStart; | 
 |       Scalar* EIGEN_RESTRICT py = y + alignedStart; | 
 |  | 
 |       if(internal::first_default_aligned(x, size)==alignedStart) | 
 |       { | 
 |         for(Index i=alignedStart; i<alignedEnd; i+=PacketSize) | 
 |         { | 
 |           Packet xi = pload<Packet>(px); | 
 |           Packet yi = pload<Packet>(py); | 
 |           pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); | 
 |           pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); | 
 |           px += PacketSize; | 
 |           py += PacketSize; | 
 |         } | 
 |       } | 
 |       else | 
 |       { | 
 |         Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); | 
 |         for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize) | 
 |         { | 
 |           Packet xi   = ploadu<Packet>(px); | 
 |           Packet xi1  = ploadu<Packet>(px+PacketSize); | 
 |           Packet yi   = pload <Packet>(py); | 
 |           Packet yi1  = pload <Packet>(py+PacketSize); | 
 |           pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); | 
 |           pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1))); | 
 |           pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); | 
 |           pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1))); | 
 |           px += Peeling*PacketSize; | 
 |           py += Peeling*PacketSize; | 
 |         } | 
 |         if(alignedEnd!=peelingEnd) | 
 |         { | 
 |           Packet xi = ploadu<Packet>(x+peelingEnd); | 
 |           Packet yi = pload <Packet>(y+peelingEnd); | 
 |           pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); | 
 |           pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); | 
 |         } | 
 |       } | 
 |  | 
 |       for(Index i=alignedEnd; i<size; ++i) | 
 |       { | 
 |         Scalar xi = x[i]; | 
 |         Scalar yi = y[i]; | 
 |         x[i] =  c * xi + numext::conj(s) * yi; | 
 |         y[i] = -s * xi + numext::conj(c) * yi; | 
 |       } | 
 |     } | 
 |  | 
 |     /*** fixed-size vectorized path ***/ | 
 |     else if(SizeAtCompileTime != Dynamic && MinAlignment>0) // FIXME should be compared to the required alignment | 
 |     { | 
 |       const OtherPacket pc = pset1<OtherPacket>(c); | 
 |       const OtherPacket ps = pset1<OtherPacket>(s); | 
 |       conj_helper<OtherPacket,Packet,NumTraits<OtherPacket>::IsComplex,false> pcj; | 
 |       conj_helper<OtherPacket,Packet,false,false> pm; | 
 |       Scalar* EIGEN_RESTRICT px = x; | 
 |       Scalar* EIGEN_RESTRICT py = y; | 
 |       for(Index i=0; i<size; i+=PacketSize) | 
 |       { | 
 |         Packet xi = pload<Packet>(px); | 
 |         Packet yi = pload<Packet>(py); | 
 |         pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); | 
 |         pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); | 
 |         px += PacketSize; | 
 |         py += PacketSize; | 
 |       } | 
 |     } | 
 |  | 
 |     /*** non-vectorized path ***/ | 
 |     else | 
 |     { | 
 |       apply_rotation_in_the_plane_selector<Scalar,OtherScalar,SizeAtCompileTime,MinAlignment,false>::run(x,incrx,y,incry,size,c,s); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template<typename VectorX, typename VectorY, typename OtherScalar> | 
 | EIGEN_DEVICE_FUNC | 
 | void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, const JacobiRotation<OtherScalar>& j) | 
 | { | 
 |   typedef typename VectorX::Scalar Scalar; | 
 |   const bool Vectorizable =    (int(VectorX::Flags) & int(VectorY::Flags) & PacketAccessBit) | 
 |                             && (int(packet_traits<Scalar>::size) == int(packet_traits<OtherScalar>::size)); | 
 |  | 
 |   eigen_assert(xpr_x.size() == xpr_y.size()); | 
 |   Index size = xpr_x.size(); | 
 |   Index incrx = xpr_x.derived().innerStride(); | 
 |   Index incry = xpr_y.derived().innerStride(); | 
 |  | 
 |   Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0); | 
 |   Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0); | 
 |  | 
 |   OtherScalar c = j.c(); | 
 |   OtherScalar s = j.s(); | 
 |   if (c==OtherScalar(1) && s==OtherScalar(0)) | 
 |     return; | 
 |  | 
 |   apply_rotation_in_the_plane_selector< | 
 |     Scalar,OtherScalar, | 
 |     VectorX::SizeAtCompileTime, | 
 |     EIGEN_PLAIN_ENUM_MIN(evaluator<VectorX>::Alignment, evaluator<VectorY>::Alignment), | 
 |     Vectorizable>::run(x,incrx,y,incry,size,c,s); | 
 | } | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_JACOBI_H |