|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  | #ifndef METIS_SUPPORT_H | 
|  | #define METIS_SUPPORT_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  | /** | 
|  | * Get the fill-reducing ordering from the METIS package | 
|  | * | 
|  | * If A is the original matrix and Ap is the permuted matrix, | 
|  | * the fill-reducing permutation is defined as follows : | 
|  | * Row (column) i of A is the matperm(i) row (column) of Ap. | 
|  | * WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm) | 
|  | */ | 
|  | template <typename StorageIndex> | 
|  | class MetisOrdering | 
|  | { | 
|  | public: | 
|  | typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> PermutationType; | 
|  | typedef Matrix<StorageIndex,Dynamic,1> IndexVector; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void get_symmetrized_graph(const MatrixType& A) | 
|  | { | 
|  | Index m = A.cols(); | 
|  | eigen_assert((A.rows() == A.cols()) && "ONLY FOR SQUARED MATRICES"); | 
|  | // Get the transpose of the input matrix | 
|  | MatrixType At = A.transpose(); | 
|  | // Get the number of nonzeros elements in each row/col of At+A | 
|  | Index TotNz = 0; | 
|  | IndexVector visited(m); | 
|  | visited.setConstant(-1); | 
|  | for (StorageIndex j = 0; j < m; j++) | 
|  | { | 
|  | // Compute the union structure of of A(j,:) and At(j,:) | 
|  | visited(j) = j; // Do not include the diagonal element | 
|  | // Get the nonzeros in row/column j of A | 
|  | for (typename MatrixType::InnerIterator it(A, j); it; ++it) | 
|  | { | 
|  | Index idx = it.index(); // Get the row index (for column major) or column index (for row major) | 
|  | if (visited(idx) != j ) | 
|  | { | 
|  | visited(idx) = j; | 
|  | ++TotNz; | 
|  | } | 
|  | } | 
|  | //Get the nonzeros in row/column j of At | 
|  | for (typename MatrixType::InnerIterator it(At, j); it; ++it) | 
|  | { | 
|  | Index idx = it.index(); | 
|  | if(visited(idx) != j) | 
|  | { | 
|  | visited(idx) = j; | 
|  | ++TotNz; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Reserve place for A + At | 
|  | m_indexPtr.resize(m+1); | 
|  | m_innerIndices.resize(TotNz); | 
|  |  | 
|  | // Now compute the real adjacency list of each column/row | 
|  | visited.setConstant(-1); | 
|  | StorageIndex CurNz = 0; | 
|  | for (StorageIndex j = 0; j < m; j++) | 
|  | { | 
|  | m_indexPtr(j) = CurNz; | 
|  |  | 
|  | visited(j) = j; // Do not include the diagonal element | 
|  | // Add the pattern of row/column j of A to A+At | 
|  | for (typename MatrixType::InnerIterator it(A,j); it; ++it) | 
|  | { | 
|  | StorageIndex idx = it.index(); // Get the row index (for column major) or column index (for row major) | 
|  | if (visited(idx) != j ) | 
|  | { | 
|  | visited(idx) = j; | 
|  | m_innerIndices(CurNz) = idx; | 
|  | CurNz++; | 
|  | } | 
|  | } | 
|  | //Add the pattern of row/column j of At to A+At | 
|  | for (typename MatrixType::InnerIterator it(At, j); it; ++it) | 
|  | { | 
|  | StorageIndex idx = it.index(); | 
|  | if(visited(idx) != j) | 
|  | { | 
|  | visited(idx) = j; | 
|  | m_innerIndices(CurNz) = idx; | 
|  | ++CurNz; | 
|  | } | 
|  | } | 
|  | } | 
|  | m_indexPtr(m) = CurNz; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void operator() (const MatrixType& A, PermutationType& matperm) | 
|  | { | 
|  | StorageIndex m = internal::convert_index<StorageIndex>(A.cols()); // must be StorageIndex, because it is passed by address to METIS | 
|  | IndexVector perm(m),iperm(m); | 
|  | // First, symmetrize the matrix graph. | 
|  | get_symmetrized_graph(A); | 
|  | int output_error; | 
|  |  | 
|  | // Call the fill-reducing routine from METIS | 
|  | output_error = METIS_NodeND(&m, m_indexPtr.data(), m_innerIndices.data(), NULL, NULL, perm.data(), iperm.data()); | 
|  |  | 
|  | if(output_error != METIS_OK) | 
|  | { | 
|  | //FIXME The ordering interface should define a class of possible errors | 
|  | std::cerr << "ERROR WHILE CALLING THE METIS PACKAGE \n"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get the fill-reducing permutation | 
|  | //NOTE:  If Ap is the permuted matrix then perm and iperm vectors are defined as follows | 
|  | // Row (column) i of Ap is the perm(i) row(column) of A, and row (column) i of A is the iperm(i) row(column) of Ap | 
|  |  | 
|  | matperm.resize(m); | 
|  | for (int j = 0; j < m; j++) | 
|  | matperm.indices()(iperm(j)) = j; | 
|  |  | 
|  | } | 
|  |  | 
|  | protected: | 
|  | IndexVector m_indexPtr; // Pointer to the adjacenccy list of each row/column | 
|  | IndexVector m_innerIndices; // Adjacency list | 
|  | }; | 
|  |  | 
|  | }// end namespace eigen | 
|  | #endif |