|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SIMPLICIAL_CHOLESKY_H | 
|  | #define EIGEN_SIMPLICIAL_CHOLESKY_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | enum SimplicialCholeskyMode { | 
|  | SimplicialCholeskyLLT, | 
|  | SimplicialCholeskyLDLT | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  | template<typename CholMatrixType, typename InputMatrixType> | 
|  | struct simplicial_cholesky_grab_input { | 
|  | typedef CholMatrixType const * ConstCholMatrixPtr; | 
|  | static void run(const InputMatrixType& input, ConstCholMatrixPtr &pmat, CholMatrixType &tmp) | 
|  | { | 
|  | tmp = input; | 
|  | pmat = &tmp; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | struct simplicial_cholesky_grab_input<MatrixType,MatrixType> { | 
|  | typedef MatrixType const * ConstMatrixPtr; | 
|  | static void run(const MatrixType& input, ConstMatrixPtr &pmat, MatrixType &/*tmp*/) | 
|  | { | 
|  | pmat = &input; | 
|  | } | 
|  | }; | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \ingroup SparseCholesky_Module | 
|  | * \brief A base class for direct sparse Cholesky factorizations | 
|  | * | 
|  | * This is a base class for LL^T and LDL^T Cholesky factorizations of sparse matrices that are | 
|  | * selfadjoint and positive definite. These factorizations allow for solving A.X = B where | 
|  | * X and B can be either dense or sparse. | 
|  | * | 
|  | * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization | 
|  | * such that the factorized matrix is P A P^-1. | 
|  | * | 
|  | * \tparam Derived the type of the derived class, that is the actual factorization type. | 
|  | * | 
|  | */ | 
|  | template<typename Derived> | 
|  | class SimplicialCholeskyBase : public SparseSolverBase<Derived> | 
|  | { | 
|  | typedef SparseSolverBase<Derived> Base; | 
|  | using Base::m_isInitialized; | 
|  |  | 
|  | public: | 
|  | typedef typename internal::traits<Derived>::MatrixType MatrixType; | 
|  | typedef typename internal::traits<Derived>::OrderingType OrderingType; | 
|  | enum { UpLo = internal::traits<Derived>::UpLo }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType; | 
|  | typedef CholMatrixType const * ConstCholMatrixPtr; | 
|  | typedef Matrix<Scalar,Dynamic,1> VectorType; | 
|  | typedef Matrix<StorageIndex,Dynamic,1> VectorI; | 
|  |  | 
|  | enum { | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | public: | 
|  |  | 
|  | using Base::derived; | 
|  |  | 
|  | /** Default constructor */ | 
|  | SimplicialCholeskyBase() | 
|  | : m_info(Success), | 
|  | m_factorizationIsOk(false), | 
|  | m_analysisIsOk(false), | 
|  | m_shiftOffset(0), | 
|  | m_shiftScale(1) | 
|  | {} | 
|  |  | 
|  | explicit SimplicialCholeskyBase(const MatrixType& matrix) | 
|  | : m_info(Success), | 
|  | m_factorizationIsOk(false), | 
|  | m_analysisIsOk(false), | 
|  | m_shiftOffset(0), | 
|  | m_shiftScale(1) | 
|  | { | 
|  | derived().compute(matrix); | 
|  | } | 
|  |  | 
|  | ~SimplicialCholeskyBase() | 
|  | { | 
|  | } | 
|  |  | 
|  | Derived& derived() { return *static_cast<Derived*>(this); } | 
|  | const Derived& derived() const { return *static_cast<const Derived*>(this); } | 
|  |  | 
|  | inline Index cols() const { return m_matrix.cols(); } | 
|  | inline Index rows() const { return m_matrix.rows(); } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, | 
|  | *          \c NumericalIssue if the matrix.appears to be negative. | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** \returns the permutation P | 
|  | * \sa permutationPinv() */ | 
|  | const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& permutationP() const | 
|  | { return m_P; } | 
|  |  | 
|  | /** \returns the inverse P^-1 of the permutation P | 
|  | * \sa permutationP() */ | 
|  | const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& permutationPinv() const | 
|  | { return m_Pinv; } | 
|  |  | 
|  | /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization. | 
|  | * | 
|  | * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n | 
|  | * \c d_ii = \a offset + \a scale * \c d_ii | 
|  | * | 
|  | * The default is the identity transformation with \a offset=0, and \a scale=1. | 
|  | * | 
|  | * \returns a reference to \c *this. | 
|  | */ | 
|  | Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1) | 
|  | { | 
|  | m_shiftOffset = offset; | 
|  | m_shiftScale = scale; | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \internal */ | 
|  | template<typename Stream> | 
|  | void dumpMemory(Stream& s) | 
|  | { | 
|  | int total = 0; | 
|  | s << "  L:        " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n"; | 
|  | s << "  diag:     " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n"; | 
|  | s << "  tree:     " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n"; | 
|  | s << "  nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n"; | 
|  | s << "  perm:     " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n"; | 
|  | s << "  perm^-1:  " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n"; | 
|  | s << "  TOTAL:    " << (total>> 20) << "Mb" << "\n"; | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const | 
|  | { | 
|  | eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); | 
|  | eigen_assert(m_matrix.rows()==b.rows()); | 
|  |  | 
|  | if(m_info!=Success) | 
|  | return; | 
|  |  | 
|  | if(m_P.size()>0) | 
|  | dest = m_P * b; | 
|  | else | 
|  | dest = b; | 
|  |  | 
|  | if(m_matrix.nonZeros()>0) // otherwise L==I | 
|  | derived().matrixL().solveInPlace(dest); | 
|  |  | 
|  | if(m_diag.size()>0) | 
|  | dest = m_diag.asDiagonal().inverse() * dest; | 
|  |  | 
|  | if (m_matrix.nonZeros()>0) // otherwise U==I | 
|  | derived().matrixU().solveInPlace(dest); | 
|  |  | 
|  | if(m_P.size()>0) | 
|  | dest = m_Pinv * dest; | 
|  | } | 
|  |  | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const | 
|  | { | 
|  | internal::solve_sparse_through_dense_panels(derived(), b, dest); | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_PARSED_BY_DOXYGEN | 
|  |  | 
|  | protected: | 
|  |  | 
|  | /** Computes the sparse Cholesky decomposition of \a matrix */ | 
|  | template<bool DoLDLT> | 
|  | void compute(const MatrixType& matrix) | 
|  | { | 
|  | eigen_assert(matrix.rows()==matrix.cols()); | 
|  | Index size = matrix.cols(); | 
|  | CholMatrixType tmp(size,size); | 
|  | ConstCholMatrixPtr pmat; | 
|  | ordering(matrix, pmat, tmp); | 
|  | analyzePattern_preordered(*pmat, DoLDLT); | 
|  | factorize_preordered<DoLDLT>(*pmat); | 
|  | } | 
|  |  | 
|  | template<bool DoLDLT> | 
|  | void factorize(const MatrixType& a) | 
|  | { | 
|  | eigen_assert(a.rows()==a.cols()); | 
|  | Index size = a.cols(); | 
|  | CholMatrixType tmp(size,size); | 
|  | ConstCholMatrixPtr pmat; | 
|  |  | 
|  | if(m_P.size() == 0 && (int(UpLo) & int(Upper)) == Upper) | 
|  | { | 
|  | // If there is no ordering, try to directly use the input matrix without any copy | 
|  | internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, tmp); | 
|  | } | 
|  | else | 
|  | { | 
|  | tmp.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P); | 
|  | pmat = &tmp; | 
|  | } | 
|  |  | 
|  | factorize_preordered<DoLDLT>(*pmat); | 
|  | } | 
|  |  | 
|  | template<bool DoLDLT> | 
|  | void factorize_preordered(const CholMatrixType& a); | 
|  |  | 
|  | void analyzePattern(const MatrixType& a, bool doLDLT) | 
|  | { | 
|  | eigen_assert(a.rows()==a.cols()); | 
|  | Index size = a.cols(); | 
|  | CholMatrixType tmp(size,size); | 
|  | ConstCholMatrixPtr pmat; | 
|  | ordering(a, pmat, tmp); | 
|  | analyzePattern_preordered(*pmat,doLDLT); | 
|  | } | 
|  | void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT); | 
|  |  | 
|  | void ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap); | 
|  |  | 
|  | /** keeps off-diagonal entries; drops diagonal entries */ | 
|  | struct keep_diag { | 
|  | inline bool operator() (const Index& row, const Index& col, const Scalar&) const | 
|  | { | 
|  | return row!=col; | 
|  | } | 
|  | }; | 
|  |  | 
|  | mutable ComputationInfo m_info; | 
|  | bool m_factorizationIsOk; | 
|  | bool m_analysisIsOk; | 
|  |  | 
|  | CholMatrixType m_matrix; | 
|  | VectorType m_diag;                                // the diagonal coefficients (LDLT mode) | 
|  | VectorI m_parent;                                 // elimination tree | 
|  | VectorI m_nonZerosPerCol; | 
|  | PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P;     // the permutation | 
|  | PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv;  // the inverse permutation | 
|  |  | 
|  | RealScalar m_shiftOffset; | 
|  | RealScalar m_shiftScale; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType_, int UpLo_ = Lower, typename Ordering_ = AMDOrdering<typename MatrixType_::StorageIndex> > class SimplicialLLT; | 
|  | template<typename MatrixType_, int UpLo_ = Lower, typename Ordering_ = AMDOrdering<typename MatrixType_::StorageIndex> > class SimplicialLDLT; | 
|  | template<typename MatrixType_, int UpLo_ = Lower, typename Ordering_ = AMDOrdering<typename MatrixType_::StorageIndex> > class SimplicialCholesky; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename MatrixType_, int UpLo_, typename Ordering_> struct traits<SimplicialLLT<MatrixType_,UpLo_,Ordering_> > | 
|  | { | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef Ordering_ OrderingType; | 
|  | enum { UpLo = UpLo_ }; | 
|  | typedef typename MatrixType::Scalar                         Scalar; | 
|  | typedef typename MatrixType::StorageIndex                   StorageIndex; | 
|  | typedef SparseMatrix<Scalar, ColMajor, StorageIndex>        CholMatrixType; | 
|  | typedef TriangularView<const CholMatrixType, Eigen::Lower>  MatrixL; | 
|  | typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::Upper>   MatrixU; | 
|  | static inline MatrixL getL(const CholMatrixType& m) { return MatrixL(m); } | 
|  | static inline MatrixU getU(const CholMatrixType& m) { return MatrixU(m.adjoint()); } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType_,int UpLo_, typename Ordering_> struct traits<SimplicialLDLT<MatrixType_,UpLo_,Ordering_> > | 
|  | { | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef Ordering_ OrderingType; | 
|  | enum { UpLo = UpLo_ }; | 
|  | typedef typename MatrixType::Scalar                             Scalar; | 
|  | typedef typename MatrixType::StorageIndex                       StorageIndex; | 
|  | typedef SparseMatrix<Scalar, ColMajor, StorageIndex>            CholMatrixType; | 
|  | typedef TriangularView<const CholMatrixType, Eigen::UnitLower>  MatrixL; | 
|  | typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU; | 
|  | static inline MatrixL getL(const CholMatrixType& m) { return MatrixL(m); } | 
|  | static inline MatrixU getU(const CholMatrixType& m) { return MatrixU(m.adjoint()); } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType_, int UpLo_, typename Ordering_> struct traits<SimplicialCholesky<MatrixType_,UpLo_,Ordering_> > | 
|  | { | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef Ordering_ OrderingType; | 
|  | enum { UpLo = UpLo_ }; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | /** \ingroup SparseCholesky_Module | 
|  | * \class SimplicialLLT | 
|  | * \brief A direct sparse LLT Cholesky factorizations | 
|  | * | 
|  | * This class provides a LL^T Cholesky factorizations of sparse matrices that are | 
|  | * selfadjoint and positive definite. The factorization allows for solving A.X = B where | 
|  | * X and B can be either dense or sparse. | 
|  | * | 
|  | * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization | 
|  | * such that the factorized matrix is P A P^-1. | 
|  | * | 
|  | * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower | 
|  | *               or Upper. Default is Lower. | 
|  | * \tparam Ordering_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering | 
|  | */ | 
|  | template<typename MatrixType_, int UpLo_, typename Ordering_> | 
|  | class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<MatrixType_,UpLo_,Ordering_> > | 
|  | { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | enum { UpLo = UpLo_ }; | 
|  | typedef SimplicialCholeskyBase<SimplicialLLT> Base; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; | 
|  | typedef Matrix<Scalar,Dynamic,1> VectorType; | 
|  | typedef internal::traits<SimplicialLLT> Traits; | 
|  | typedef typename Traits::MatrixL  MatrixL; | 
|  | typedef typename Traits::MatrixU  MatrixU; | 
|  | public: | 
|  | /** Default constructor */ | 
|  | SimplicialLLT() : Base() {} | 
|  | /** Constructs and performs the LLT factorization of \a matrix */ | 
|  | explicit SimplicialLLT(const MatrixType& matrix) | 
|  | : Base(matrix) {} | 
|  |  | 
|  | /** \returns an expression of the factor L */ | 
|  | inline const MatrixL matrixL() const { | 
|  | eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); | 
|  | return Traits::getL(Base::m_matrix); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the factor U (= L^*) */ | 
|  | inline const MatrixU matrixU() const { | 
|  | eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); | 
|  | return Traits::getU(Base::m_matrix); | 
|  | } | 
|  |  | 
|  | /** Computes the sparse Cholesky decomposition of \a matrix */ | 
|  | SimplicialLLT& compute(const MatrixType& matrix) | 
|  | { | 
|  | Base::template compute<false>(matrix); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
|  | * | 
|  | * This function is particularly useful when solving for several problems having the same structure. | 
|  | * | 
|  | * \sa factorize() | 
|  | */ | 
|  | void analyzePattern(const MatrixType& a) | 
|  | { | 
|  | Base::analyzePattern(a, false); | 
|  | } | 
|  |  | 
|  | /** Performs a numeric decomposition of \a matrix | 
|  | * | 
|  | * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. | 
|  | * | 
|  | * \sa analyzePattern() | 
|  | */ | 
|  | void factorize(const MatrixType& a) | 
|  | { | 
|  | Base::template factorize<false>(a); | 
|  | } | 
|  |  | 
|  | /** \returns the determinant of the underlying matrix from the current factorization */ | 
|  | Scalar determinant() const | 
|  | { | 
|  | Scalar detL = Base::m_matrix.diagonal().prod(); | 
|  | return numext::abs2(detL); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \ingroup SparseCholesky_Module | 
|  | * \class SimplicialLDLT | 
|  | * \brief A direct sparse LDLT Cholesky factorizations without square root. | 
|  | * | 
|  | * This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are | 
|  | * selfadjoint and positive definite. The factorization allows for solving A.X = B where | 
|  | * X and B can be either dense or sparse. | 
|  | * | 
|  | * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization | 
|  | * such that the factorized matrix is P A P^-1. | 
|  | * | 
|  | * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower | 
|  | *               or Upper. Default is Lower. | 
|  | * \tparam Ordering_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering | 
|  | */ | 
|  | template<typename MatrixType_, int UpLo_, typename Ordering_> | 
|  | class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<MatrixType_,UpLo_,Ordering_> > | 
|  | { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | enum { UpLo = UpLo_ }; | 
|  | typedef SimplicialCholeskyBase<SimplicialLDLT> Base; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType; | 
|  | typedef Matrix<Scalar,Dynamic,1> VectorType; | 
|  | typedef internal::traits<SimplicialLDLT> Traits; | 
|  | typedef typename Traits::MatrixL  MatrixL; | 
|  | typedef typename Traits::MatrixU  MatrixU; | 
|  | public: | 
|  | /** Default constructor */ | 
|  | SimplicialLDLT() : Base() {} | 
|  |  | 
|  | /** Constructs and performs the LLT factorization of \a matrix */ | 
|  | explicit SimplicialLDLT(const MatrixType& matrix) | 
|  | : Base(matrix) {} | 
|  |  | 
|  | /** \returns a vector expression of the diagonal D */ | 
|  | inline const VectorType vectorD() const { | 
|  | eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); | 
|  | return Base::m_diag; | 
|  | } | 
|  | /** \returns an expression of the factor L */ | 
|  | inline const MatrixL matrixL() const { | 
|  | eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); | 
|  | return Traits::getL(Base::m_matrix); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the factor U (= L^*) */ | 
|  | inline const MatrixU matrixU() const { | 
|  | eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); | 
|  | return Traits::getU(Base::m_matrix); | 
|  | } | 
|  |  | 
|  | /** Computes the sparse Cholesky decomposition of \a matrix */ | 
|  | SimplicialLDLT& compute(const MatrixType& matrix) | 
|  | { | 
|  | Base::template compute<true>(matrix); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
|  | * | 
|  | * This function is particularly useful when solving for several problems having the same structure. | 
|  | * | 
|  | * \sa factorize() | 
|  | */ | 
|  | void analyzePattern(const MatrixType& a) | 
|  | { | 
|  | Base::analyzePattern(a, true); | 
|  | } | 
|  |  | 
|  | /** Performs a numeric decomposition of \a matrix | 
|  | * | 
|  | * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. | 
|  | * | 
|  | * \sa analyzePattern() | 
|  | */ | 
|  | void factorize(const MatrixType& a) | 
|  | { | 
|  | Base::template factorize<true>(a); | 
|  | } | 
|  |  | 
|  | /** \returns the determinant of the underlying matrix from the current factorization */ | 
|  | Scalar determinant() const | 
|  | { | 
|  | return Base::m_diag.prod(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \deprecated use SimplicialLDLT or class SimplicialLLT | 
|  | * \ingroup SparseCholesky_Module | 
|  | * \class SimplicialCholesky | 
|  | * | 
|  | * \sa class SimplicialLDLT, class SimplicialLLT | 
|  | */ | 
|  | template<typename MatrixType_, int UpLo_, typename Ordering_> | 
|  | class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<MatrixType_,UpLo_,Ordering_> > | 
|  | { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | enum { UpLo = UpLo_ }; | 
|  | typedef SimplicialCholeskyBase<SimplicialCholesky> Base; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType; | 
|  | typedef Matrix<Scalar,Dynamic,1> VectorType; | 
|  | typedef internal::traits<SimplicialCholesky> Traits; | 
|  | typedef internal::traits<SimplicialLDLT<MatrixType,UpLo> > LDLTTraits; | 
|  | typedef internal::traits<SimplicialLLT<MatrixType,UpLo>  > LLTTraits; | 
|  | public: | 
|  | SimplicialCholesky() : Base(), m_LDLT(true) {} | 
|  |  | 
|  | explicit SimplicialCholesky(const MatrixType& matrix) | 
|  | : Base(), m_LDLT(true) | 
|  | { | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | SimplicialCholesky& setMode(SimplicialCholeskyMode mode) | 
|  | { | 
|  | switch(mode) | 
|  | { | 
|  | case SimplicialCholeskyLLT: | 
|  | m_LDLT = false; | 
|  | break; | 
|  | case SimplicialCholeskyLDLT: | 
|  | m_LDLT = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | inline const VectorType vectorD() const { | 
|  | eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); | 
|  | return Base::m_diag; | 
|  | } | 
|  | inline const CholMatrixType rawMatrix() const { | 
|  | eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); | 
|  | return Base::m_matrix; | 
|  | } | 
|  |  | 
|  | /** Computes the sparse Cholesky decomposition of \a matrix */ | 
|  | SimplicialCholesky& compute(const MatrixType& matrix) | 
|  | { | 
|  | if(m_LDLT) | 
|  | Base::template compute<true>(matrix); | 
|  | else | 
|  | Base::template compute<false>(matrix); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
|  | * | 
|  | * This function is particularly useful when solving for several problems having the same structure. | 
|  | * | 
|  | * \sa factorize() | 
|  | */ | 
|  | void analyzePattern(const MatrixType& a) | 
|  | { | 
|  | Base::analyzePattern(a, m_LDLT); | 
|  | } | 
|  |  | 
|  | /** Performs a numeric decomposition of \a matrix | 
|  | * | 
|  | * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. | 
|  | * | 
|  | * \sa analyzePattern() | 
|  | */ | 
|  | void factorize(const MatrixType& a) | 
|  | { | 
|  | if(m_LDLT) | 
|  | Base::template factorize<true>(a); | 
|  | else | 
|  | Base::template factorize<false>(a); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const | 
|  | { | 
|  | eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); | 
|  | eigen_assert(Base::m_matrix.rows()==b.rows()); | 
|  |  | 
|  | if(Base::m_info!=Success) | 
|  | return; | 
|  |  | 
|  | if(Base::m_P.size()>0) | 
|  | dest = Base::m_P * b; | 
|  | else | 
|  | dest = b; | 
|  |  | 
|  | if(Base::m_matrix.nonZeros()>0) // otherwise L==I | 
|  | { | 
|  | if(m_LDLT) | 
|  | LDLTTraits::getL(Base::m_matrix).solveInPlace(dest); | 
|  | else | 
|  | LLTTraits::getL(Base::m_matrix).solveInPlace(dest); | 
|  | } | 
|  |  | 
|  | if(Base::m_diag.size()>0) | 
|  | dest = Base::m_diag.real().asDiagonal().inverse() * dest; | 
|  |  | 
|  | if (Base::m_matrix.nonZeros()>0) // otherwise I==I | 
|  | { | 
|  | if(m_LDLT) | 
|  | LDLTTraits::getU(Base::m_matrix).solveInPlace(dest); | 
|  | else | 
|  | LLTTraits::getU(Base::m_matrix).solveInPlace(dest); | 
|  | } | 
|  |  | 
|  | if(Base::m_P.size()>0) | 
|  | dest = Base::m_Pinv * dest; | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename Rhs,typename Dest> | 
|  | void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const | 
|  | { | 
|  | internal::solve_sparse_through_dense_panels(*this, b, dest); | 
|  | } | 
|  |  | 
|  | Scalar determinant() const | 
|  | { | 
|  | if(m_LDLT) | 
|  | { | 
|  | return Base::m_diag.prod(); | 
|  | } | 
|  | else | 
|  | { | 
|  | Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod(); | 
|  | return numext::abs2(detL); | 
|  | } | 
|  | } | 
|  |  | 
|  | protected: | 
|  | bool m_LDLT; | 
|  | }; | 
|  |  | 
|  | template<typename Derived> | 
|  | void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap) | 
|  | { | 
|  | eigen_assert(a.rows()==a.cols()); | 
|  | const Index size = a.rows(); | 
|  | pmat = ≈ | 
|  | // Note that ordering methods compute the inverse permutation | 
|  | if(!internal::is_same<OrderingType,NaturalOrdering<Index> >::value) | 
|  | { | 
|  | { | 
|  | CholMatrixType C; | 
|  | C = a.template selfadjointView<UpLo>(); | 
|  |  | 
|  | OrderingType ordering; | 
|  | ordering(C,m_Pinv); | 
|  | } | 
|  |  | 
|  | if(m_Pinv.size()>0) m_P = m_Pinv.inverse(); | 
|  | else                m_P.resize(0); | 
|  |  | 
|  | ap.resize(size,size); | 
|  | ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P); | 
|  | } | 
|  | else | 
|  | { | 
|  | m_Pinv.resize(0); | 
|  | m_P.resize(0); | 
|  | if(int(UpLo)==int(Lower) || MatrixType::IsRowMajor) | 
|  | { | 
|  | // we have to transpose the lower part to to the upper one | 
|  | ap.resize(size,size); | 
|  | ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>(); | 
|  | } | 
|  | else | 
|  | internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, ap); | 
|  | } | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_SIMPLICIAL_CHOLESKY_H |