|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "common.h" | 
|  | #include <Eigen/LU> | 
|  |  | 
|  | // computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges | 
|  | EIGEN_LAPACK_FUNC(getrf,(int *m, int *n, RealScalar *pa, int *lda, int *ipiv, int *info)) | 
|  | { | 
|  | *info = 0; | 
|  | if(*m<0)                  *info = -1; | 
|  | else  if(*n<0)                  *info = -2; | 
|  | else  if(*lda<std::max(1,*m))   *info = -4; | 
|  | if(*info!=0) | 
|  | { | 
|  | int e = -*info; | 
|  | return xerbla_(SCALAR_SUFFIX_UP"GETRF", &e, 6); | 
|  | } | 
|  |  | 
|  | if(*m==0 || *n==0) | 
|  | return 0; | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | int nb_transpositions; | 
|  | int ret = int(Eigen::internal::partial_lu_impl<Scalar,ColMajor,int> | 
|  | ::blocked_lu(*m, *n, a, *lda, ipiv, nb_transpositions)); | 
|  |  | 
|  | for(int i=0; i<std::min(*m,*n); ++i) | 
|  | ipiv[i]++; | 
|  |  | 
|  | if(ret>=0) | 
|  | *info = ret+1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //GETRS solves a system of linear equations | 
|  | //    A * X = B  or  A' * X = B | 
|  | //  with a general N-by-N matrix A using the LU factorization computed  by GETRF | 
|  | EIGEN_LAPACK_FUNC(getrs,(char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info)) | 
|  | { | 
|  | *info = 0; | 
|  | if(OP(*trans)==INVALID)  *info = -1; | 
|  | else  if(*n<0)                 *info = -2; | 
|  | else  if(*nrhs<0)              *info = -3; | 
|  | else  if(*lda<std::max(1,*n))  *info = -5; | 
|  | else  if(*ldb<std::max(1,*n))  *info = -8; | 
|  | if(*info!=0) | 
|  | { | 
|  | int e = -*info; | 
|  | return xerbla_(SCALAR_SUFFIX_UP"GETRS", &e, 6); | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | MatrixType lu(a,*n,*n,*lda); | 
|  | MatrixType B(b,*n,*nrhs,*ldb); | 
|  |  | 
|  | for(int i=0; i<*n; ++i) | 
|  | ipiv[i]--; | 
|  | if(OP(*trans)==NOTR) | 
|  | { | 
|  | B = PivotsType(ipiv,*n) * B; | 
|  | lu.triangularView<UnitLower>().solveInPlace(B); | 
|  | lu.triangularView<Upper>().solveInPlace(B); | 
|  | } | 
|  | else if(OP(*trans)==TR) | 
|  | { | 
|  | lu.triangularView<Upper>().transpose().solveInPlace(B); | 
|  | lu.triangularView<UnitLower>().transpose().solveInPlace(B); | 
|  | B = PivotsType(ipiv,*n).transpose() * B; | 
|  | } | 
|  | else if(OP(*trans)==ADJ) | 
|  | { | 
|  | lu.triangularView<Upper>().adjoint().solveInPlace(B); | 
|  | lu.triangularView<UnitLower>().adjoint().solveInPlace(B); | 
|  | B = PivotsType(ipiv,*n).transpose() * B; | 
|  | } | 
|  | for(int i=0; i<*n; ++i) | 
|  | ipiv[i]++; | 
|  |  | 
|  | return 0; | 
|  | } |