|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "product.h" | 
|  | #include <Eigen/LU> | 
|  |  | 
|  | template<typename T> | 
|  | void test_aliasing() | 
|  | { | 
|  | int rows = internal::random<int>(1,12); | 
|  | int cols = internal::random<int>(1,12); | 
|  | typedef Matrix<T,Dynamic,Dynamic> MatrixType; | 
|  | typedef Matrix<T,Dynamic,1> VectorType; | 
|  | VectorType x(cols); x.setRandom(); | 
|  | VectorType z(x); | 
|  | VectorType y(rows); y.setZero(); | 
|  | MatrixType A(rows,cols); A.setRandom(); | 
|  | // CwiseBinaryOp | 
|  | VERIFY_IS_APPROX(x = y + A*x, A*z);     // OK because "y + A*x" is marked as "assume-aliasing" | 
|  | x = z; | 
|  | // CwiseUnaryOp | 
|  | VERIFY_IS_APPROX(x = T(1.)*(A*x), A*z); // OK because 1*(A*x) is replaced by (1*A*x) which is a Product<> expression | 
|  | x = z; | 
|  | // VERIFY_IS_APPROX(x = y-A*x, -A*z);   // Not OK in 3.3 because x is resized before A*x gets evaluated | 
|  | x = z; | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void product_large_regressions() | 
|  | { | 
|  | { | 
|  | // test a specific issue in DiagonalProduct | 
|  | int N = 1000000; | 
|  | VectorXf v = VectorXf::Ones(N); | 
|  | MatrixXf m = MatrixXf::Ones(N,3); | 
|  | m = (v+v).asDiagonal() * m; | 
|  | VERIFY_IS_APPROX(m, MatrixXf::Constant(N,3,2)); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test deferred resizing in Matrix::operator= | 
|  | MatrixXf a = MatrixXf::Random(10,4), b = MatrixXf::Random(4,10), c = a; | 
|  | VERIFY_IS_APPROX((a = a * b), (c * b).eval()); | 
|  | } | 
|  |  | 
|  | { | 
|  | // check the functions to setup blocking sizes compile and do not segfault | 
|  | // FIXME check they do what they are supposed to do !! | 
|  | std::ptrdiff_t l1 = internal::random<int>(10000,20000); | 
|  | std::ptrdiff_t l2 = internal::random<int>(100000,200000); | 
|  | std::ptrdiff_t l3 = internal::random<int>(1000000,2000000); | 
|  | setCpuCacheSizes(l1,l2,l3); | 
|  | VERIFY(l1==l1CacheSize()); | 
|  | VERIFY(l2==l2CacheSize()); | 
|  | std::ptrdiff_t k1 = internal::random<int>(10,100)*16; | 
|  | std::ptrdiff_t m1 = internal::random<int>(10,100)*16; | 
|  | std::ptrdiff_t n1 = internal::random<int>(10,100)*16; | 
|  | // only makes sure it compiles fine | 
|  | internal::computeProductBlockingSizes<float,float,std::ptrdiff_t>(k1,m1,n1,1); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test regression in row-vector by matrix (bad Map type) | 
|  | MatrixXf mat1(10,32); mat1.setRandom(); | 
|  | MatrixXf mat2(32,32); mat2.setRandom(); | 
|  | MatrixXf r1 = mat1.row(2)*mat2.transpose(); | 
|  | VERIFY_IS_APPROX(r1, (mat1.row(2)*mat2.transpose()).eval()); | 
|  |  | 
|  | MatrixXf r2 = mat1.row(2)*mat2; | 
|  | VERIFY_IS_APPROX(r2, (mat1.row(2)*mat2).eval()); | 
|  | } | 
|  |  | 
|  | { | 
|  | Eigen::MatrixXd A(10,10), B, C; | 
|  | A.setRandom(); | 
|  | C = A; | 
|  | for(int k=0; k<79; ++k) | 
|  | C = C * A; | 
|  | B.noalias() = (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))) | 
|  | * (((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A)) * ((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))*((A*A)*(A*A))); | 
|  | VERIFY_IS_APPROX(B,C); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void bug_1622() { | 
|  | typedef Matrix<double, 2, -1, 0, 2, -1> Mat2X; | 
|  | Mat2X x(2,2); x.setRandom(); | 
|  | MatrixXd y(2,2); y.setRandom(); | 
|  | const Mat2X K1 = x * y.inverse(); | 
|  | const Matrix2d K2 = x * y.inverse(); | 
|  | VERIFY_IS_APPROX(K1,K2); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(product_large) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( product(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_2( product(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_2( product(MatrixXd(internal::random<int>(1,10), internal::random<int>(1,10))) ); | 
|  |  | 
|  | CALL_SUBTEST_3( product(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_4( product(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | 
|  | CALL_SUBTEST_5( product(Matrix<float,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  |  | 
|  | CALL_SUBTEST_1( test_aliasing<float>() ); | 
|  |  | 
|  | CALL_SUBTEST_6( bug_1622<1>() ); | 
|  |  | 
|  | CALL_SUBTEST_7( product(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | 
|  | CALL_SUBTEST_8( product(Matrix<double,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_9( product(Matrix<std::complex<float>,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_10( product(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_6( product_large_regressions<0>() ); | 
|  |  | 
|  | // Regression test for bug 714: | 
|  | #if defined EIGEN_HAS_OPENMP | 
|  | omp_set_dynamic(1); | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_6( product(Matrix<float,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | } | 
|  | #endif | 
|  | } |