| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #define TEST_ENABLE_TEMPORARY_TRACKING | 
 | #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 | 
 | // ^^ see bug 1449 | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template<typename MatrixType> void matrixRedux(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols); | 
 |  | 
 |   // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test | 
 |   // failures if we underflow into denormals. Thus, we scale so that entries are close to 1. | 
 |   MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1; | 
 |  | 
 |   Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m2(rows,rows); | 
 |   m2.setRandom(); | 
 |  | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); | 
 |   VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy | 
 |   Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0))); | 
 |   for(int j = 0; j < cols; j++) | 
 |   for(int i = 0; i < rows; i++) | 
 |   { | 
 |     s += m1(i,j); | 
 |     p *= m1_for_prod(i,j); | 
 |     minc = (std::min)(numext::real(minc), numext::real(m1(i,j))); | 
 |     maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j))); | 
 |   } | 
 |   const Scalar mean = s/Scalar(RealScalar(rows*cols)); | 
 |  | 
 |   VERIFY_IS_APPROX(m1.sum(), s); | 
 |   VERIFY_IS_APPROX(m1.mean(), mean); | 
 |   VERIFY_IS_APPROX(m1_for_prod.prod(), p); | 
 |   VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc)); | 
 |   VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc)); | 
 |    | 
 |   // test that partial reduction works if nested expressions is forced to evaluate early | 
 |   VERIFY_IS_APPROX((m1.matrix() * m1.matrix().transpose())       .cwiseProduct(m2.matrix()).rowwise().sum().sum(),  | 
 |                    (m1.matrix() * m1.matrix().transpose()).eval().cwiseProduct(m2.matrix()).rowwise().sum().sum()); | 
 |  | 
 |   // test slice vectorization assuming assign is ok | 
 |   Index r0 = internal::random<Index>(0,rows-1); | 
 |   Index c0 = internal::random<Index>(0,cols-1); | 
 |   Index r1 = internal::random<Index>(r0+1,rows)-r0; | 
 |   Index c1 = internal::random<Index>(c0+1,cols)-c0; | 
 |   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum()); | 
 |   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean()); | 
 |   VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod()); | 
 |   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff()); | 
 |   VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff()); | 
 |  | 
 |   // regression for bug 1090 | 
 |   const int R1 = MatrixType::RowsAtCompileTime>=2 ? MatrixType::RowsAtCompileTime/2 : 6; | 
 |   const int C1 = MatrixType::ColsAtCompileTime>=2 ? MatrixType::ColsAtCompileTime/2 : 6; | 
 |   if(R1<=rows-r0 && C1<=cols-c0) | 
 |   { | 
 |     VERIFY_IS_APPROX( (m1.template block<R1,C1>(r0,c0).sum()), m1.block(r0,c0,R1,C1).sum() ); | 
 |   } | 
 |    | 
 |   // test empty objects | 
 |   VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(),   Scalar(0)); | 
 |   VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(),  Scalar(1)); | 
 |  | 
 |   // test nesting complex expression | 
 |   VERIFY_EVALUATION_COUNT( (m1.matrix()*m1.matrix().transpose()).sum(), (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime!=1 ? 0 : 1) ); | 
 |   VERIFY_EVALUATION_COUNT( ((m1.matrix()*m1.matrix().transpose())+m2).sum(),(MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime!=1 ? 0 : 1)); | 
 | } | 
 |  | 
 | template<typename VectorType> void vectorRedux(const VectorType& w) | 
 | { | 
 |   using std::abs; | 
 |   typedef typename VectorType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   Index size = w.size(); | 
 |  | 
 |   VectorType v = VectorType::Random(size); | 
 |   VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod | 
 |  | 
 |   for(int i = 1; i < size; i++) | 
 |   { | 
 |     Scalar s(0), p(1); | 
 |     RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0))); | 
 |     for(int j = 0; j < i; j++) | 
 |     { | 
 |       s += v[j]; | 
 |       p *= v_for_prod[j]; | 
 |       minc = (std::min)(minc, numext::real(v[j])); | 
 |       maxc = (std::max)(maxc, numext::real(v[j])); | 
 |     } | 
 |     VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1)); | 
 |     VERIFY_IS_APPROX(p, v_for_prod.head(i).prod()); | 
 |     VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); | 
 |     VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); | 
 |   } | 
 |  | 
 |   for(int i = 0; i < size-1; i++) | 
 |   { | 
 |     Scalar s(0), p(1); | 
 |     RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); | 
 |     for(int j = i; j < size; j++) | 
 |     { | 
 |       s += v[j]; | 
 |       p *= v_for_prod[j]; | 
 |       minc = (std::min)(minc, numext::real(v[j])); | 
 |       maxc = (std::max)(maxc, numext::real(v[j])); | 
 |     } | 
 |     VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1)); | 
 |     VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod()); | 
 |     VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff()); | 
 |     VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff()); | 
 |   } | 
 |  | 
 |   for(int i = 0; i < size/2; i++) | 
 |   { | 
 |     Scalar s(0), p(1); | 
 |     RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); | 
 |     for(int j = i; j < size-i; j++) | 
 |     { | 
 |       s += v[j]; | 
 |       p *= v_for_prod[j]; | 
 |       minc = (std::min)(minc, numext::real(v[j])); | 
 |       maxc = (std::max)(maxc, numext::real(v[j])); | 
 |     } | 
 |     VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1)); | 
 |     VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod()); | 
 |     VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff()); | 
 |     VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff()); | 
 |   } | 
 |    | 
 |   // test empty objects | 
 |   VERIFY_IS_APPROX(v.head(0).sum(),   Scalar(0)); | 
 |   VERIFY_IS_APPROX(v.tail(0).prod(),  Scalar(1)); | 
 |   VERIFY_RAISES_ASSERT(v.head(0).mean()); | 
 |   VERIFY_RAISES_ASSERT(v.head(0).minCoeff()); | 
 |   VERIFY_RAISES_ASSERT(v.head(0).maxCoeff()); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(redux) | 
 | { | 
 |   // the max size cannot be too large, otherwise reduxion operations obviously generate large errors. | 
 |   int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE); | 
 |   TEST_SET_BUT_UNUSED_VARIABLE(maxsize); | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( matrixRedux(Matrix2f()) ); | 
 |     CALL_SUBTEST_2( matrixRedux(Array2f()) ); | 
 |     CALL_SUBTEST_2( matrixRedux(Array22f()) ); | 
 |     CALL_SUBTEST_3( matrixRedux(Matrix4d()) ); | 
 |     CALL_SUBTEST_3( matrixRedux(Array4d()) ); | 
 |     CALL_SUBTEST_3( matrixRedux(Array44d()) ); | 
 |     CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | 
 |     CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | 
 |     CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | 
 |     CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | 
 |     CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | 
 |     CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) ); | 
 |   } | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_7( vectorRedux(Vector4f()) ); | 
 |     CALL_SUBTEST_7( vectorRedux(Array4f()) ); | 
 |     CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) ); | 
 |     CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) ); | 
 |     CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) ); | 
 |     CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) ); | 
 |   } | 
 | } |