| // This file is part of a joint effort between Eigen, a lightweight C++ template library | 
 | // for linear algebra, and MPFR C++, a C++ interface to MPFR library (http://www.holoborodko.com/pavel/) | 
 | // | 
 | // Copyright (C) 2010-2012 Pavel Holoborodko <pavel@holoborodko.com> | 
 | // Copyright (C) 2010 Konstantin Holoborodko <konstantin@holoborodko.com> | 
 | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_MPREALSUPPORT_MODULE_H | 
 | #define EIGEN_MPREALSUPPORT_MODULE_H | 
 |  | 
 | #include "../../Eigen/Core" | 
 | #include <mpreal.h> | 
 |  | 
 | namespace Eigen { | 
 |    | 
 | /** | 
 |   * \defgroup MPRealSupport_Module MPFRC++ Support module | 
 |   * \code | 
 |   * #include <Eigen/MPRealSupport> | 
 |   * \endcode | 
 |   * | 
 |   * This module provides support for multi precision floating point numbers | 
 |   * via the <a href="http://www.holoborodko.com/pavel/mpfr">MPFR C++</a> | 
 |   * library which itself is built upon <a href="http://www.mpfr.org/">MPFR</a>/<a href="http://gmplib.org/">GMP</a>. | 
 |   * | 
 |   * \warning MPFR C++ is licensed under the GPL. | 
 |   * | 
 |   * You can find a copy of MPFR C++ that is known to be compatible in the unsupported/test/mpreal folder. | 
 |   * | 
 |   * Here is an example: | 
 |   * | 
 | \code | 
 | #include <iostream> | 
 | #include <Eigen/MPRealSupport> | 
 | #include <Eigen/LU> | 
 | using namespace mpfr; | 
 | using namespace Eigen; | 
 | int main() | 
 | { | 
 |   // set precision to 256 bits (double has only 53 bits) | 
 |   mpreal::set_default_prec(256); | 
 |   // Declare matrix and vector types with multi-precision scalar type | 
 |   typedef Matrix<mpreal,Dynamic,Dynamic>  MatrixXmp; | 
 |   typedef Matrix<mpreal,Dynamic,1>        VectorXmp; | 
 |  | 
 |   MatrixXmp A = MatrixXmp::Random(100,100); | 
 |   VectorXmp b = VectorXmp::Random(100); | 
 |  | 
 |   // Solve Ax=b using LU | 
 |   VectorXmp x = A.lu().solve(b); | 
 |   std::cout << "relative error: " << (A*x - b).norm() / b.norm() << std::endl; | 
 |   return 0; | 
 | } | 
 | \endcode | 
 |   * | 
 |   */ | 
 | 	 | 
 |   template<> struct NumTraits<mpfr::mpreal> | 
 |     : GenericNumTraits<mpfr::mpreal> | 
 |   { | 
 |     enum { | 
 |       IsInteger = 0, | 
 |       IsSigned = 1, | 
 |       IsComplex = 0, | 
 |       RequireInitialization = 1, | 
 |       ReadCost = HugeCost, | 
 |       AddCost  = HugeCost, | 
 |       MulCost  = HugeCost | 
 |     }; | 
 |  | 
 |     typedef mpfr::mpreal Real; | 
 |     typedef mpfr::mpreal NonInteger; | 
 |      | 
 |     static inline Real highest  (long Precision = mpfr::mpreal::get_default_prec()) { return  mpfr::maxval(Precision); } | 
 |     static inline Real lowest   (long Precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(Precision); } | 
 |  | 
 |     // Constants | 
 |     static inline Real Pi      (long Precision = mpfr::mpreal::get_default_prec())  { return mpfr::const_pi(Precision);        } | 
 |     static inline Real Euler   (long Precision = mpfr::mpreal::get_default_prec())  { return mpfr::const_euler(Precision);     } | 
 |     static inline Real Log2    (long Precision = mpfr::mpreal::get_default_prec())  { return mpfr::const_log2(Precision);      } | 
 |     static inline Real Catalan (long Precision = mpfr::mpreal::get_default_prec())  { return mpfr::const_catalan(Precision);   } | 
 |  | 
 |     static inline Real epsilon (long Precision = mpfr::mpreal::get_default_prec())  { return mpfr::machine_epsilon(Precision); } | 
 |     static inline Real epsilon (const Real& x)                                      { return mpfr::machine_epsilon(x); } | 
 |  | 
 | #ifdef MPREAL_HAVE_DYNAMIC_STD_NUMERIC_LIMITS | 
 |     static inline int digits10 (long Precision = mpfr::mpreal::get_default_prec())  { return std::numeric_limits<Real>::digits10(Precision); } | 
 |     static inline int digits10 (const Real& x)                                      { return std::numeric_limits<Real>::digits10(x); } | 
 |      | 
 |     static inline int digits ()               { return std::numeric_limits<Real>::digits(); } | 
 |     static inline int digits (const Real& x)  { return std::numeric_limits<Real>::digits(x); } | 
 | #endif | 
 |  | 
 |     static inline Real dummy_precision() | 
 |     { | 
 |       mpfr_prec_t weak_prec = ((mpfr::mpreal::get_default_prec()-1) * 90) / 100; | 
 |       return mpfr::machine_epsilon(weak_prec); | 
 |     } | 
 |   }; | 
 |  | 
 |   namespace internal { | 
 |  | 
 |   template<> inline mpfr::mpreal random<mpfr::mpreal>() | 
 |   { | 
 |     return mpfr::random(); | 
 |   } | 
 |  | 
 |   template<> inline mpfr::mpreal random<mpfr::mpreal>(const mpfr::mpreal& a, const mpfr::mpreal& b) | 
 |   { | 
 |     return a + (b-a) * random<mpfr::mpreal>(); | 
 |   } | 
 |  | 
 |   inline bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) | 
 |   { | 
 |     return mpfr::abs(a) <= mpfr::abs(b) * eps; | 
 |   } | 
 |  | 
 |   inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) | 
 |   { | 
 |     return mpfr::isEqualFuzzy(a,b,eps); | 
 |   } | 
 |  | 
 |   inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps) | 
 |   { | 
 |     return a <= b || mpfr::isEqualFuzzy(a,b,eps); | 
 |   } | 
 |  | 
 |   template<> inline long double cast<mpfr::mpreal,long double>(const mpfr::mpreal& x) | 
 |   { return x.toLDouble(); } | 
 |  | 
 |   template<> inline double cast<mpfr::mpreal,double>(const mpfr::mpreal& x) | 
 |   { return x.toDouble(); } | 
 |  | 
 |   template<> inline long cast<mpfr::mpreal,long>(const mpfr::mpreal& x) | 
 |   { return x.toLong(); } | 
 |  | 
 |   template<> inline int cast<mpfr::mpreal,int>(const mpfr::mpreal& x) | 
 |   { return int(x.toLong()); } | 
 |  | 
 |   // Specialize GEBP kernel and traits for mpreal (no need for peeling, nor complicated stuff) | 
 |   // This also permits to directly call mpfr's routines and avoid many temporaries produced by mpreal | 
 |     template<> | 
 |     class gebp_traits<mpfr::mpreal, mpfr::mpreal, false, false> | 
 |     { | 
 |     public: | 
 |       typedef mpfr::mpreal ResScalar; | 
 |       enum { | 
 |         Vectorizable = false, | 
 |         LhsPacketSize = 1, | 
 |         RhsPacketSize = 1, | 
 |         ResPacketSize = 1, | 
 |         NumberOfRegisters = 1, | 
 |         nr = 1, | 
 |         mr = 1, | 
 |         LhsProgress = 1, | 
 |         RhsProgress = 1 | 
 |       }; | 
 |       typedef ResScalar LhsPacket; | 
 |       typedef ResScalar RhsPacket; | 
 |       typedef ResScalar ResPacket; | 
 |       typedef LhsPacket LhsPacket4Packing; | 
 |        | 
 |     }; | 
 |  | 
 |  | 
 |  | 
 |     template<typename Index, typename DataMapper, bool ConjugateLhs, bool ConjugateRhs> | 
 |     struct gebp_kernel<mpfr::mpreal,mpfr::mpreal,Index,DataMapper,1,1,ConjugateLhs,ConjugateRhs> | 
 |     { | 
 |       typedef mpfr::mpreal mpreal; | 
 |  | 
 |       EIGEN_DONT_INLINE | 
 |       void operator()(const DataMapper& res, const mpreal* blockA, const mpreal* blockB,  | 
 |                       Index rows, Index depth, Index cols, const mpreal& alpha, | 
 |                       Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0) | 
 |       { | 
 |         if(rows==0 || cols==0 || depth==0) | 
 |           return; | 
 |  | 
 |         mpreal  acc1(0,mpfr_get_prec(blockA[0].mpfr_srcptr())), | 
 |                 tmp (0,mpfr_get_prec(blockA[0].mpfr_srcptr())); | 
 |  | 
 |         if(strideA==-1) strideA = depth; | 
 |         if(strideB==-1) strideB = depth; | 
 |  | 
 |         for(Index i=0; i<rows; ++i) | 
 |         { | 
 |           for(Index j=0; j<cols; ++j) | 
 |           { | 
 |             const mpreal *A = blockA + i*strideA + offsetA; | 
 |             const mpreal *B = blockB + j*strideB + offsetB; | 
 |              | 
 |             acc1 = 0; | 
 |             for(Index k=0; k<depth; k++) | 
 |             { | 
 |               mpfr_mul(tmp.mpfr_ptr(), A[k].mpfr_srcptr(), B[k].mpfr_srcptr(), mpreal::get_default_rnd()); | 
 |               mpfr_add(acc1.mpfr_ptr(), acc1.mpfr_ptr(), tmp.mpfr_ptr(),  mpreal::get_default_rnd()); | 
 |             } | 
 |              | 
 |             mpfr_mul(acc1.mpfr_ptr(), acc1.mpfr_srcptr(), alpha.mpfr_srcptr(), mpreal::get_default_rnd()); | 
 |             mpfr_add(res(i,j).mpfr_ptr(), res(i,j).mpfr_srcptr(), acc1.mpfr_srcptr(),  mpreal::get_default_rnd()); | 
 |           } | 
 |         } | 
 |       } | 
 |     }; | 
 |   } // end namespace internal | 
 | } | 
 |  | 
 | #endif // EIGEN_MPREALSUPPORT_MODULE_H |