|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2016 | 
|  | // Mehdi Goli    Codeplay Software Ltd. | 
|  | // Ralph Potter  Codeplay Software Ltd. | 
|  | // Luke Iwanski  Codeplay Software Ltd. | 
|  | // Contact: <eigen@codeplay.com> | 
|  | // Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  |  | 
|  | #define EIGEN_TEST_NO_LONGDOUBLE | 
|  | #define EIGEN_TEST_NO_COMPLEX | 
|  |  | 
|  | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t | 
|  | #define EIGEN_USE_SYCL | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::array; | 
|  | using Eigen::SyclDevice; | 
|  | using Eigen::Tensor; | 
|  | using Eigen::TensorMap; | 
|  |  | 
|  | template <typename DataType, int DataLayout, typename IndexType> | 
|  | void test_sycl_mem_transfers(const Eigen::SyclDevice &sycl_device) { | 
|  | IndexType sizeDim1 = 5; | 
|  | IndexType sizeDim2 = 5; | 
|  | IndexType sizeDim3 = 1; | 
|  | array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; | 
|  | Tensor<DataType, 3, DataLayout, IndexType> in1(tensorRange); | 
|  | Tensor<DataType, 3, DataLayout, IndexType> out1(tensorRange); | 
|  | Tensor<DataType, 3, DataLayout, IndexType> out2(tensorRange); | 
|  | Tensor<DataType, 3, DataLayout, IndexType> out3(tensorRange); | 
|  |  | 
|  | in1 = in1.random(); | 
|  |  | 
|  | DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType))); | 
|  | DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(out1.size()*sizeof(DataType))); | 
|  |  | 
|  | TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange); | 
|  | TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange); | 
|  |  | 
|  | sycl_device.memcpyHostToDevice(gpu_data1, in1.data(),(in1.size())*sizeof(DataType)); | 
|  | sycl_device.memcpyHostToDevice(gpu_data2, in1.data(),(in1.size())*sizeof(DataType)); | 
|  | gpu1.device(sycl_device) = gpu1 * 3.14f; | 
|  | gpu2.device(sycl_device) = gpu2 * 2.7f; | 
|  | sycl_device.memcpyDeviceToHost(out1.data(), gpu_data1,(out1.size())*sizeof(DataType)); | 
|  | sycl_device.memcpyDeviceToHost(out2.data(), gpu_data1,(out2.size())*sizeof(DataType)); | 
|  | sycl_device.memcpyDeviceToHost(out3.data(), gpu_data2,(out3.size())*sizeof(DataType)); | 
|  | sycl_device.synchronize(); | 
|  |  | 
|  | for (IndexType i = 0; i < in1.size(); ++i) { | 
|  | //  std::cout << "SYCL DATA : " << out1(i) << "  vs  CPU DATA : " << in1(i) * 3.14f << "\n"; | 
|  | VERIFY_IS_APPROX(out1(i), in1(i) * 3.14f); | 
|  | VERIFY_IS_APPROX(out2(i), in1(i) * 3.14f); | 
|  | VERIFY_IS_APPROX(out3(i), in1(i) * 2.7f); | 
|  | } | 
|  |  | 
|  | sycl_device.deallocate(gpu_data1); | 
|  | sycl_device.deallocate(gpu_data2); | 
|  | } | 
|  |  | 
|  | template <typename DataType, int DataLayout, typename IndexType> | 
|  | void test_sycl_mem_sync(const Eigen::SyclDevice &sycl_device) { | 
|  | IndexType size = 20; | 
|  | array<IndexType, 1> tensorRange = {{size}}; | 
|  | Tensor<DataType, 1, DataLayout, IndexType> in1(tensorRange); | 
|  | Tensor<DataType, 1, DataLayout, IndexType> in2(tensorRange); | 
|  | Tensor<DataType, 1, DataLayout, IndexType> out(tensorRange); | 
|  |  | 
|  | in1 = in1.random(); | 
|  | in2 = in1; | 
|  |  | 
|  | DataType* gpu_data  = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType))); | 
|  |  | 
|  | TensorMap<Tensor<DataType, 1, DataLayout, IndexType>> gpu1(gpu_data, tensorRange); | 
|  | sycl_device.memcpyHostToDevice(gpu_data, in1.data(),(in1.size())*sizeof(DataType)); | 
|  | sycl_device.synchronize(); | 
|  | in1.setZero(); | 
|  |  | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_data, out.size()*sizeof(DataType)); | 
|  | sycl_device.synchronize(); | 
|  |  | 
|  | for (IndexType i = 0; i < in1.size(); ++i) { | 
|  | VERIFY_IS_APPROX(out(i), in2(i)); | 
|  | } | 
|  |  | 
|  | sycl_device.deallocate(gpu_data); | 
|  | } | 
|  |  | 
|  | template <typename DataType, int DataLayout, typename IndexType> | 
|  | void test_sycl_mem_sync_offsets(const Eigen::SyclDevice &sycl_device) { | 
|  | using tensor_type = Tensor<DataType, 1, DataLayout, IndexType>; | 
|  | IndexType full_size = 32; | 
|  | IndexType half_size = full_size / 2; | 
|  | array<IndexType, 1> tensorRange = {{full_size}}; | 
|  | tensor_type in1(tensorRange); | 
|  | tensor_type out(tensorRange); | 
|  |  | 
|  | DataType* gpu_data  = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType))); | 
|  | TensorMap<tensor_type> gpu1(gpu_data, tensorRange); | 
|  |  | 
|  | in1 = in1.random(); | 
|  | // Copy all data to device, then permute on copy back to host | 
|  | sycl_device.memcpyHostToDevice(gpu_data, in1.data(), full_size * sizeof(DataType)); | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_data + half_size, half_size * sizeof(DataType)); | 
|  | sycl_device.memcpyDeviceToHost(out.data() + half_size, gpu_data, half_size * sizeof(DataType)); | 
|  |  | 
|  | for (IndexType i = 0; i < half_size; ++i) { | 
|  | VERIFY_IS_APPROX(out(i), in1(i + half_size)); | 
|  | VERIFY_IS_APPROX(out(i + half_size), in1(i)); | 
|  | } | 
|  |  | 
|  | in1 = in1.random(); | 
|  | out.setZero(); | 
|  | // Permute copies to device, then copy all back to host | 
|  | sycl_device.memcpyHostToDevice(gpu_data + half_size, in1.data(), half_size * sizeof(DataType)); | 
|  | sycl_device.memcpyHostToDevice(gpu_data, in1.data() + half_size, half_size * sizeof(DataType)); | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_data, full_size * sizeof(DataType)); | 
|  |  | 
|  | for (IndexType i = 0; i < half_size; ++i) { | 
|  | VERIFY_IS_APPROX(out(i), in1(i + half_size)); | 
|  | VERIFY_IS_APPROX(out(i + half_size), in1(i)); | 
|  | } | 
|  |  | 
|  | in1 = in1.random(); | 
|  | out.setZero(); | 
|  | DataType* gpu_data_out  = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType))); | 
|  | TensorMap<tensor_type> gpu2(gpu_data_out, tensorRange); | 
|  | // Copy all to device, permute copies on device, then copy all back to host | 
|  | sycl_device.memcpyHostToDevice(gpu_data, in1.data(), full_size * sizeof(DataType)); | 
|  | sycl_device.memcpy(gpu_data_out + half_size, gpu_data, half_size * sizeof(DataType)); | 
|  | sycl_device.memcpy(gpu_data_out, gpu_data + half_size, half_size * sizeof(DataType)); | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, full_size * sizeof(DataType)); | 
|  |  | 
|  | for (IndexType i = 0; i < half_size; ++i) { | 
|  | VERIFY_IS_APPROX(out(i), in1(i + half_size)); | 
|  | VERIFY_IS_APPROX(out(i + half_size), in1(i)); | 
|  | } | 
|  |  | 
|  | sycl_device.deallocate(gpu_data_out); | 
|  | sycl_device.deallocate(gpu_data); | 
|  | } | 
|  |  | 
|  | template <typename DataType, int DataLayout, typename IndexType> | 
|  | void test_sycl_memset_offsets(const Eigen::SyclDevice &sycl_device) { | 
|  | using tensor_type = Tensor<DataType, 1, DataLayout, IndexType>; | 
|  | IndexType full_size = 32; | 
|  | IndexType half_size = full_size / 2; | 
|  | array<IndexType, 1> tensorRange = {{full_size}}; | 
|  | tensor_type cpu_out(tensorRange); | 
|  | tensor_type out(tensorRange); | 
|  |  | 
|  | cpu_out.setZero(); | 
|  |  | 
|  | std::memset(cpu_out.data(), 0, half_size * sizeof(DataType)); | 
|  | std::memset(cpu_out.data() + half_size, 1, half_size * sizeof(DataType)); | 
|  |  | 
|  | DataType* gpu_data  = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType))); | 
|  | TensorMap<tensor_type> gpu1(gpu_data, tensorRange); | 
|  |  | 
|  | sycl_device.memset(gpu_data, 0, half_size * sizeof(DataType)); | 
|  | sycl_device.memset(gpu_data + half_size, 1, half_size * sizeof(DataType)); | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_data, full_size * sizeof(DataType)); | 
|  |  | 
|  | for (IndexType i = 0; i < full_size; ++i) { | 
|  | VERIFY_IS_APPROX(out(i), cpu_out(i)); | 
|  | } | 
|  |  | 
|  | sycl_device.deallocate(gpu_data); | 
|  | } | 
|  |  | 
|  | template <typename DataType, int DataLayout, typename IndexType> | 
|  | void test_sycl_computations(const Eigen::SyclDevice &sycl_device) { | 
|  |  | 
|  | IndexType sizeDim1 = 100; | 
|  | IndexType sizeDim2 = 10; | 
|  | IndexType sizeDim3 = 20; | 
|  | array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; | 
|  | Tensor<DataType, 3,DataLayout, IndexType> in1(tensorRange); | 
|  | Tensor<DataType, 3,DataLayout, IndexType> in2(tensorRange); | 
|  | Tensor<DataType, 3,DataLayout, IndexType> in3(tensorRange); | 
|  | Tensor<DataType, 3,DataLayout, IndexType> out(tensorRange); | 
|  |  | 
|  | in2 = in2.random(); | 
|  | in3 = in3.random(); | 
|  |  | 
|  | DataType * gpu_in1_data  = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType))); | 
|  | DataType * gpu_in2_data  = static_cast<DataType*>(sycl_device.allocate(in2.size()*sizeof(DataType))); | 
|  | DataType * gpu_in3_data  = static_cast<DataType*>(sycl_device.allocate(in3.size()*sizeof(DataType))); | 
|  | DataType * gpu_out_data =  static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType))); | 
|  |  | 
|  | TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange); | 
|  | TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange); | 
|  | TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in3(gpu_in3_data, tensorRange); | 
|  | TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange); | 
|  |  | 
|  | /// a=1.2f | 
|  | gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f); | 
|  | sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.size())*sizeof(DataType)); | 
|  | sycl_device.synchronize(); | 
|  |  | 
|  | for (IndexType i = 0; i < sizeDim1; ++i) { | 
|  | for (IndexType j = 0; j < sizeDim2; ++j) { | 
|  | for (IndexType k = 0; k < sizeDim3; ++k) { | 
|  | VERIFY_IS_APPROX(in1(i,j,k), 1.2f); | 
|  | } | 
|  | } | 
|  | } | 
|  | printf("a=1.2f Test passed\n"); | 
|  |  | 
|  | /// a=b*1.2f | 
|  | gpu_out.device(sycl_device) = gpu_in1 * 1.2f; | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.size())*sizeof(DataType)); | 
|  | sycl_device.synchronize(); | 
|  |  | 
|  | for (IndexType i = 0; i < sizeDim1; ++i) { | 
|  | for (IndexType j = 0; j < sizeDim2; ++j) { | 
|  | for (IndexType k = 0; k < sizeDim3; ++k) { | 
|  | VERIFY_IS_APPROX(out(i,j,k), | 
|  | in1(i,j,k) * 1.2f); | 
|  | } | 
|  | } | 
|  | } | 
|  | printf("a=b*1.2f Test Passed\n"); | 
|  |  | 
|  | /// c=a*b | 
|  | sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType)); | 
|  | gpu_out.device(sycl_device) = gpu_in1 * gpu_in2; | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); | 
|  | sycl_device.synchronize(); | 
|  |  | 
|  | for (IndexType i = 0; i < sizeDim1; ++i) { | 
|  | for (IndexType j = 0; j < sizeDim2; ++j) { | 
|  | for (IndexType k = 0; k < sizeDim3; ++k) { | 
|  | VERIFY_IS_APPROX(out(i,j,k), | 
|  | in1(i,j,k) * | 
|  | in2(i,j,k)); | 
|  | } | 
|  | } | 
|  | } | 
|  | printf("c=a*b Test Passed\n"); | 
|  |  | 
|  | /// c=a+b | 
|  | gpu_out.device(sycl_device) = gpu_in1 + gpu_in2; | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); | 
|  | sycl_device.synchronize(); | 
|  | for (IndexType i = 0; i < sizeDim1; ++i) { | 
|  | for (IndexType j = 0; j < sizeDim2; ++j) { | 
|  | for (IndexType k = 0; k < sizeDim3; ++k) { | 
|  | VERIFY_IS_APPROX(out(i,j,k), | 
|  | in1(i,j,k) + | 
|  | in2(i,j,k)); | 
|  | } | 
|  | } | 
|  | } | 
|  | printf("c=a+b Test Passed\n"); | 
|  |  | 
|  | /// c=a*a | 
|  | gpu_out.device(sycl_device) = gpu_in1 * gpu_in1; | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); | 
|  | sycl_device.synchronize(); | 
|  | for (IndexType i = 0; i < sizeDim1; ++i) { | 
|  | for (IndexType j = 0; j < sizeDim2; ++j) { | 
|  | for (IndexType k = 0; k < sizeDim3; ++k) { | 
|  | VERIFY_IS_APPROX(out(i,j,k), | 
|  | in1(i,j,k) * | 
|  | in1(i,j,k)); | 
|  | } | 
|  | } | 
|  | } | 
|  | printf("c= a*a Test Passed\n"); | 
|  |  | 
|  | //a*3.14f + b*2.7f | 
|  | gpu_out.device(sycl_device) =  gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f); | 
|  | sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.size())*sizeof(DataType)); | 
|  | sycl_device.synchronize(); | 
|  | for (IndexType i = 0; i < sizeDim1; ++i) { | 
|  | for (IndexType j = 0; j < sizeDim2; ++j) { | 
|  | for (IndexType k = 0; k < sizeDim3; ++k) { | 
|  | VERIFY_IS_APPROX(out(i,j,k), | 
|  | in1(i,j,k) * 3.14f | 
|  | + in2(i,j,k) * 2.7f); | 
|  | } | 
|  | } | 
|  | } | 
|  | printf("a*3.14f + b*2.7f Test Passed\n"); | 
|  |  | 
|  | ///d= (a>0.5? b:c) | 
|  | sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.size())*sizeof(DataType)); | 
|  | gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3); | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); | 
|  | sycl_device.synchronize(); | 
|  | for (IndexType i = 0; i < sizeDim1; ++i) { | 
|  | for (IndexType j = 0; j < sizeDim2; ++j) { | 
|  | for (IndexType k = 0; k < sizeDim3; ++k) { | 
|  | VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f) | 
|  | ? in2(i, j, k) | 
|  | : in3(i, j, k)); | 
|  | } | 
|  | } | 
|  | } | 
|  | printf("d= (a>0.5? b:c) Test Passed\n"); | 
|  | sycl_device.deallocate(gpu_in1_data); | 
|  | sycl_device.deallocate(gpu_in2_data); | 
|  | sycl_device.deallocate(gpu_in3_data); | 
|  | sycl_device.deallocate(gpu_out_data); | 
|  | } | 
|  | template<typename Scalar1, typename Scalar2,  int DataLayout, typename IndexType> | 
|  | static void test_sycl_cast(const Eigen::SyclDevice& sycl_device){ | 
|  | IndexType size = 20; | 
|  | array<IndexType, 1> tensorRange = {{size}}; | 
|  | Tensor<Scalar1, 1, DataLayout, IndexType> in(tensorRange); | 
|  | Tensor<Scalar2, 1, DataLayout, IndexType> out(tensorRange); | 
|  | Tensor<Scalar2, 1, DataLayout, IndexType> out_host(tensorRange); | 
|  |  | 
|  | in = in.random(); | 
|  |  | 
|  | Scalar1* gpu_in_data  = static_cast<Scalar1*>(sycl_device.allocate(in.size()*sizeof(Scalar1))); | 
|  | Scalar2 * gpu_out_data =  static_cast<Scalar2*>(sycl_device.allocate(out.size()*sizeof(Scalar2))); | 
|  |  | 
|  | TensorMap<Tensor<Scalar1, 1, DataLayout, IndexType>> gpu_in(gpu_in_data, tensorRange); | 
|  | TensorMap<Tensor<Scalar2, 1, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange); | 
|  | sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.size())*sizeof(Scalar1)); | 
|  | gpu_out.device(sycl_device) = gpu_in. template cast<Scalar2>(); | 
|  | sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, out.size()*sizeof(Scalar2)); | 
|  | out_host = in. template cast<Scalar2>(); | 
|  | for(IndexType i=0; i< size; i++) | 
|  | { | 
|  | VERIFY_IS_APPROX(out(i), out_host(i)); | 
|  | } | 
|  | printf("cast Test Passed\n"); | 
|  | sycl_device.deallocate(gpu_in_data); | 
|  | sycl_device.deallocate(gpu_out_data); | 
|  | } | 
|  | template<typename DataType, typename dev_Selector> void sycl_computing_test_per_device(dev_Selector s){ | 
|  | QueueInterface queueInterface(s); | 
|  | auto sycl_device = Eigen::SyclDevice(&queueInterface); | 
|  | test_sycl_mem_transfers<DataType, RowMajor, int64_t>(sycl_device); | 
|  | test_sycl_computations<DataType, RowMajor, int64_t>(sycl_device); | 
|  | test_sycl_mem_sync<DataType, RowMajor, int64_t>(sycl_device); | 
|  | test_sycl_mem_sync_offsets<DataType, RowMajor, int64_t>(sycl_device); | 
|  | test_sycl_memset_offsets<DataType, RowMajor, int64_t>(sycl_device); | 
|  | test_sycl_mem_transfers<DataType, ColMajor, int64_t>(sycl_device); | 
|  | test_sycl_computations<DataType, ColMajor, int64_t>(sycl_device); | 
|  | test_sycl_mem_sync<DataType, ColMajor, int64_t>(sycl_device); | 
|  | test_sycl_cast<DataType, int, RowMajor, int64_t>(sycl_device); | 
|  | test_sycl_cast<DataType, int, ColMajor, int64_t>(sycl_device); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_sycl) { | 
|  | for (const auto& device :Eigen::get_sycl_supported_devices()) { | 
|  | CALL_SUBTEST(sycl_computing_test_per_device<float>(device)); | 
|  | } | 
|  | } |