| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/MatrixFunctions> | 
 |  | 
 | // Variant of VERIFY_IS_APPROX which uses absolute error instead of | 
 | // relative error. | 
 | #define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b)) | 
 |  | 
 | template<typename Type1, typename Type2> | 
 | inline bool test_isApprox_abs(const Type1& a, const Type2& b) | 
 | { | 
 |   return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all(); | 
 | } | 
 |  | 
 |  | 
 | // Returns a matrix with eigenvalues clustered around 0, 1 and 2. | 
 | template<typename MatrixType> | 
 | MatrixType randomMatrixWithRealEivals(const Index size) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   MatrixType diag = MatrixType::Zero(size, size); | 
 |   for (Index i = 0; i < size; ++i) { | 
 |     diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2))) | 
 |       + internal::random<Scalar>() * Scalar(RealScalar(0.01)); | 
 |   } | 
 |   MatrixType A = MatrixType::Random(size, size); | 
 |   HouseholderQR<MatrixType> QRofA(A); | 
 |   return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | 
 | } | 
 |  | 
 | template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> | 
 | struct randomMatrixWithImagEivals | 
 | { | 
 |   // Returns a matrix with eigenvalues clustered around 0 and +/- i. | 
 |   static MatrixType run(const Index size); | 
 | }; | 
 |  | 
 | // Partial specialization for real matrices | 
 | template<typename MatrixType> | 
 | struct randomMatrixWithImagEivals<MatrixType, 0> | 
 | { | 
 |   static MatrixType run(const Index size) | 
 |   { | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     MatrixType diag = MatrixType::Zero(size, size); | 
 |     Index i = 0; | 
 |     while (i < size) { | 
 |       Index randomInt = internal::random<Index>(-1, 1); | 
 |       if (randomInt == 0 || i == size-1) { | 
 |         diag(i, i) = internal::random<Scalar>() * Scalar(0.01); | 
 |         ++i; | 
 |       } else { | 
 |         Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01); | 
 |         diag(i, i+1) = alpha; | 
 |         diag(i+1, i) = -alpha; | 
 |         i += 2; | 
 |       } | 
 |     } | 
 |     MatrixType A = MatrixType::Random(size, size); | 
 |     HouseholderQR<MatrixType> QRofA(A); | 
 |     return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | 
 |   } | 
 | }; | 
 |  | 
 | // Partial specialization for complex matrices | 
 | template<typename MatrixType> | 
 | struct randomMatrixWithImagEivals<MatrixType, 1> | 
 | { | 
 |   static MatrixType run(const Index size) | 
 |   { | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     const Scalar imagUnit(0, 1); | 
 |     MatrixType diag = MatrixType::Zero(size, size); | 
 |     for (Index i = 0; i < size; ++i) { | 
 |       diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit | 
 |         + internal::random<Scalar>() * Scalar(RealScalar(0.01)); | 
 |     } | 
 |     MatrixType A = MatrixType::Random(size, size); | 
 |     HouseholderQR<MatrixType> QRofA(A); | 
 |     return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | template<typename MatrixType> | 
 | void testMatrixExponential(const MatrixType& A) | 
 | { | 
 |   typedef typename internal::traits<MatrixType>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef std::complex<RealScalar> ComplexScalar; | 
 |  | 
 |   VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>)); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void testMatrixLogarithm(const MatrixType& A) | 
 | { | 
 |   typedef typename internal::traits<MatrixType>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   MatrixType scaledA; | 
 |   RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff(); | 
 |   if (maxImagPartOfSpectrum >= RealScalar(0.9L * EIGEN_PI)) | 
 |     scaledA = A * RealScalar(0.9L * EIGEN_PI) / maxImagPartOfSpectrum; | 
 |   else | 
 |     scaledA = A; | 
 |  | 
 |   // identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X | 
 |   MatrixType expA = scaledA.exp(); | 
 |   MatrixType logExpA = expA.log(); | 
 |   VERIFY_IS_APPROX(logExpA, scaledA); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void testHyperbolicFunctions(const MatrixType& A) | 
 | { | 
 |   // Need to use absolute error because of possible cancellation when | 
 |   // adding/subtracting expA and expmA. | 
 |   VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2); | 
 |   VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void testGonioFunctions(const MatrixType& A) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef std::complex<RealScalar> ComplexScalar; | 
 |   typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime,  | 
 |                  MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix; | 
 |  | 
 |   ComplexScalar imagUnit(0,1); | 
 |   ComplexScalar two(2,0); | 
 |  | 
 |   ComplexMatrix Ac = A.template cast<ComplexScalar>(); | 
 |    | 
 |   ComplexMatrix exp_iA = (imagUnit * Ac).exp(); | 
 |   ComplexMatrix exp_miA = (-imagUnit * Ac).exp(); | 
 |    | 
 |   ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>(); | 
 |   VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit)); | 
 |    | 
 |   ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>(); | 
 |   VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void testMatrix(const MatrixType& A) | 
 | { | 
 |   testMatrixExponential(A); | 
 |   testMatrixLogarithm(A); | 
 |   testHyperbolicFunctions(A); | 
 |   testGonioFunctions(A); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void testMatrixType(const MatrixType& m) | 
 | { | 
 |   // Matrices with clustered eigenvalue lead to different code paths | 
 |   // in MatrixFunction.h and are thus useful for testing. | 
 |  | 
 |   const Index size = m.rows(); | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     testMatrix(MatrixType::Random(size, size).eval()); | 
 |     testMatrix(randomMatrixWithRealEivals<MatrixType>(size)); | 
 |     testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size)); | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void testMapRef(const MatrixType& A) | 
 | { | 
 |   // Test if passing Ref and Map objects is possible | 
 |   // (Regression test for Bug #1796) | 
 |   Index size = A.rows(); | 
 |   MatrixType X; X.setRandom(size, size); | 
 |   MatrixType Y(size,size); | 
 |   Ref<      MatrixType> R(Y); | 
 |   Ref<const MatrixType> Rc(X); | 
 |   Map<      MatrixType> M(Y.data(), size, size); | 
 |   Map<const MatrixType> Mc(X.data(), size, size); | 
 |  | 
 |   X = X*X; // make sure sqrt is possible | 
 |   Y = X.sqrt(); | 
 |   R = Rc.sqrt(); | 
 |   M = Mc.sqrt(); | 
 |   Y = X.exp(); | 
 |   R = Rc.exp(); | 
 |   M = Mc.exp(); | 
 |   X = Y; // make sure log is possible | 
 |   Y = X.log(); | 
 |   R = Rc.log(); | 
 |   M = Mc.log(); | 
 |  | 
 |   Y = X.cos() + Rc.cos() + Mc.cos(); | 
 |   Y = X.sin() + Rc.sin() + Mc.sin(); | 
 |  | 
 |   Y = X.cosh() + Rc.cosh() + Mc.cosh(); | 
 |   Y = X.sinh() + Rc.sinh() + Mc.sinh(); | 
 | } | 
 |  | 
 |  | 
 | EIGEN_DECLARE_TEST(matrix_function) | 
 | { | 
 |   CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>())); | 
 |   CALL_SUBTEST_2(testMatrixType(Matrix3cf())); | 
 |   CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8))); | 
 |   CALL_SUBTEST_4(testMatrixType(Matrix2d())); | 
 |   CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>())); | 
 |   CALL_SUBTEST_6(testMatrixType(Matrix4cd())); | 
 |   CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13))); | 
 |  | 
 |   CALL_SUBTEST_1(testMapRef(Matrix<float,1,1>())); | 
 |   CALL_SUBTEST_2(testMapRef(Matrix3cf())); | 
 |   CALL_SUBTEST_3(testMapRef(MatrixXf(8,8))); | 
 |   CALL_SUBTEST_7(testMapRef(MatrixXd(13,13))); | 
 | } |