blob: f1ff3cc786cb31e72b016b6459140b8afcd0ad14 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
int EIGEN_BLAS_FUNC(axpy)(const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, RealScalar *py,
const int *incy) {
const Scalar *x = reinterpret_cast<const Scalar *>(px);
Scalar *y = reinterpret_cast<Scalar *>(py);
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
if (*n <= 0) return 0;
if (*incx == 1 && *incy == 1)
make_vector(y, *n) += alpha * make_vector(x, *n);
else if (*incx > 0 && *incy > 0)
make_vector(y, *n, *incy) += alpha * make_vector(x, *n, *incx);
else if (*incx > 0 && *incy < 0)
make_vector(y, *n, -*incy).reverse() += alpha * make_vector(x, *n, *incx);
else if (*incx < 0 && *incy > 0)
make_vector(y, *n, *incy) += alpha * make_vector(x, *n, -*incx).reverse();
else if (*incx < 0 && *incy < 0)
make_vector(y, *n, -*incy).reverse() += alpha * make_vector(x, *n, -*incx).reverse();
return 0;
}
int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) {
if (*n <= 0) return 0;
Scalar *x = reinterpret_cast<Scalar *>(px);
Scalar *y = reinterpret_cast<Scalar *>(py);
// be careful, *incx==0 is allowed !!
if (*incx == 1 && *incy == 1)
make_vector(y, *n) = make_vector(x, *n);
else {
if (*incx < 0) x = x - (*n - 1) * (*incx);
if (*incy < 0) y = y - (*n - 1) * (*incy);
for (int i = 0; i < *n; ++i) {
*y = *x;
x += *incx;
y += *incy;
}
}
return 0;
}
int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps) {
using std::abs;
using std::sqrt;
Scalar &a = *reinterpret_cast<Scalar *>(pa);
Scalar &b = *reinterpret_cast<Scalar *>(pb);
RealScalar *c = pc;
Scalar *s = reinterpret_cast<Scalar *>(ps);
#if !ISCOMPLEX
Scalar r, z;
Scalar aa = abs(a);
Scalar ab = abs(b);
if ((aa + ab) == Scalar(0)) {
*c = 1;
*s = 0;
r = 0;
z = 0;
} else {
r = sqrt(a * a + b * b);
Scalar amax = aa > ab ? a : b;
r = amax > 0 ? r : -r;
*c = a / r;
*s = b / r;
z = 1;
if (aa > ab) z = *s;
if (ab > aa && *c != RealScalar(0)) z = Scalar(1) / *c;
}
*pa = r;
*pb = z;
#else
Scalar alpha;
RealScalar norm, scale;
if (abs(a) == RealScalar(0)) {
*c = RealScalar(0);
*s = Scalar(1);
a = b;
} else {
scale = abs(a) + abs(b);
norm = scale * sqrt((numext::abs2(a / scale)) + (numext::abs2(b / scale)));
alpha = a / abs(a);
*c = abs(a) / norm;
*s = alpha * numext::conj(b) / norm;
a = alpha * norm;
}
#endif
// JacobiRotation<Scalar> r;
// r.makeGivens(a,b);
// *c = r.c();
// *s = r.s();
return 0;
}
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx) {
if (*n <= 0) return 0;
Scalar *x = reinterpret_cast<Scalar *>(px);
Scalar alpha = *reinterpret_cast<Scalar *>(palpha);
if (*incx == 1)
make_vector(x, *n) *= alpha;
else
make_vector(x, *n, std::abs(*incx)) *= alpha;
return 0;
}
int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) {
if (*n <= 0) return 0;
Scalar *x = reinterpret_cast<Scalar *>(px);
Scalar *y = reinterpret_cast<Scalar *>(py);
if (*incx == 1 && *incy == 1)
make_vector(y, *n).swap(make_vector(x, *n));
else if (*incx > 0 && *incy > 0)
make_vector(y, *n, *incy).swap(make_vector(x, *n, *incx));
else if (*incx > 0 && *incy < 0)
make_vector(y, *n, -*incy).reverse().swap(make_vector(x, *n, *incx));
else if (*incx < 0 && *incy > 0)
make_vector(y, *n, *incy).swap(make_vector(x, *n, -*incx).reverse());
else if (*incx < 0 && *incy < 0)
make_vector(y, *n, -*incy).reverse().swap(make_vector(x, *n, -*incx).reverse());
return 1;
}