|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_DOT_H | 
|  | #define EIGEN_DOT_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot | 
|  | // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE | 
|  | // looking at the static assertions. Thus this is a trick to get better compile errors. | 
|  | template<typename T, typename U, | 
|  | // the NeedToTranspose condition here is taken straight from Assign.h | 
|  | bool NeedToTranspose = T::IsVectorAtCompileTime | 
|  | && U::IsVectorAtCompileTime | 
|  | && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) | 
|  | |  // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&". | 
|  | // revert to || as soon as not needed anymore. | 
|  | (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1)) | 
|  | > | 
|  | struct dot_nocheck | 
|  | { | 
|  | typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod; | 
|  | typedef typename conj_prod::result_type ResScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE | 
|  | static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) | 
|  | { | 
|  | return a.template binaryExpr<conj_prod>(b).sum(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T, typename U> | 
|  | struct dot_nocheck<T, U, true> | 
|  | { | 
|  | typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod; | 
|  | typedef typename conj_prod::result_type ResScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE | 
|  | static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) | 
|  | { | 
|  | return a.transpose().template binaryExpr<conj_prod>(b).sum(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \fn MatrixBase::dot | 
|  | * \returns the dot product of *this with other. | 
|  | * | 
|  | * \only_for_vectors | 
|  | * | 
|  | * \note If the scalar type is complex numbers, then this function returns the hermitian | 
|  | * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the | 
|  | * second variable. | 
|  | * | 
|  | * \sa squaredNorm(), norm() | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE | 
|  | typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType | 
|  | MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) | 
|  | EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) | 
|  | #if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG)) | 
|  | typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func; | 
|  | EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar); | 
|  | #endif | 
|  |  | 
|  | eigen_assert(size() == other.size()); | 
|  |  | 
|  | return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other); | 
|  | } | 
|  |  | 
|  | //---------- implementation of L2 norm and related functions ---------- | 
|  |  | 
|  | /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm. | 
|  | * In both cases, it consists in the sum of the square of all the matrix entries. | 
|  | * For vectors, this is also equals to the dot product of \c *this with itself. | 
|  | * | 
|  | * \sa dot(), norm(), lpNorm() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const | 
|  | { | 
|  | return numext::real((*this).cwiseAbs2().sum()); | 
|  | } | 
|  |  | 
|  | /** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm. | 
|  | * In both cases, it consists in the square root of the sum of the square of all the matrix entries. | 
|  | * For vectors, this is also equals to the square root of the dot product of \c *this with itself. | 
|  | * | 
|  | * \sa lpNorm(), dot(), squaredNorm() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const | 
|  | { | 
|  | return numext::sqrt(squaredNorm()); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the quotient of \c *this by its own norm. | 
|  | * | 
|  | * \warning If the input vector is too small (i.e., this->norm()==0), | 
|  | *          then this function returns a copy of the input. | 
|  | * | 
|  | * \only_for_vectors | 
|  | * | 
|  | * \sa norm(), normalize() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject | 
|  | MatrixBase<Derived>::normalized() const | 
|  | { | 
|  | typedef typename internal::nested_eval<Derived,2>::type _Nested; | 
|  | _Nested n(derived()); | 
|  | RealScalar z = n.squaredNorm(); | 
|  | // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU | 
|  | if(z>RealScalar(0)) | 
|  | return n / numext::sqrt(z); | 
|  | else | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /** Normalizes the vector, i.e. divides it by its own norm. | 
|  | * | 
|  | * \only_for_vectors | 
|  | * | 
|  | * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. | 
|  | * | 
|  | * \sa norm(), normalized() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::normalize() | 
|  | { | 
|  | RealScalar z = squaredNorm(); | 
|  | // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU | 
|  | if(z>RealScalar(0)) | 
|  | derived() /= numext::sqrt(z); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow. | 
|  | * | 
|  | * \only_for_vectors | 
|  | * | 
|  | * This method is analogue to the normalized() method, but it reduces the risk of | 
|  | * underflow and overflow when computing the norm. | 
|  | * | 
|  | * \warning If the input vector is too small (i.e., this->norm()==0), | 
|  | *          then this function returns a copy of the input. | 
|  | * | 
|  | * \sa stableNorm(), stableNormalize(), normalized() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject | 
|  | MatrixBase<Derived>::stableNormalized() const | 
|  | { | 
|  | typedef typename internal::nested_eval<Derived,3>::type _Nested; | 
|  | _Nested n(derived()); | 
|  | RealScalar w = n.cwiseAbs().maxCoeff(); | 
|  | RealScalar z = (n/w).squaredNorm(); | 
|  | if(z>RealScalar(0)) | 
|  | return n / (numext::sqrt(z)*w); | 
|  | else | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /** Normalizes the vector while avoid underflow and overflow | 
|  | * | 
|  | * \only_for_vectors | 
|  | * | 
|  | * This method is analogue to the normalize() method, but it reduces the risk of | 
|  | * underflow and overflow when computing the norm. | 
|  | * | 
|  | * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. | 
|  | * | 
|  | * \sa stableNorm(), stableNormalized(), normalize() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void MatrixBase<Derived>::stableNormalize() | 
|  | { | 
|  | RealScalar w = cwiseAbs().maxCoeff(); | 
|  | RealScalar z = (derived()/w).squaredNorm(); | 
|  | if(z>RealScalar(0)) | 
|  | derived() /= numext::sqrt(z)*w; | 
|  | } | 
|  |  | 
|  | //---------- implementation of other norms ---------- | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename Derived, int p> | 
|  | struct lpNorm_selector | 
|  | { | 
|  | typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const MatrixBase<Derived>& m) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(pow) | 
|  | return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived> | 
|  | struct lpNorm_selector<Derived, 1> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) | 
|  | { | 
|  | return m.cwiseAbs().sum(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived> | 
|  | struct lpNorm_selector<Derived, 2> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) | 
|  | { | 
|  | return m.norm(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Derived> | 
|  | struct lpNorm_selector<Derived, Infinity> | 
|  | { | 
|  | typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const MatrixBase<Derived>& m) | 
|  | { | 
|  | if(Derived::SizeAtCompileTime==0 || (Derived::SizeAtCompileTime==Dynamic && m.size()==0)) | 
|  | return RealScalar(0); | 
|  | return m.cwiseAbs().maxCoeff(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values | 
|  | *          of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$ | 
|  | *          norm, that is the maximum of the absolute values of the coefficients of \c *this. | 
|  | * | 
|  | * In all cases, if \c *this is empty, then the value 0 is returned. | 
|  | * | 
|  | * \note For matrices, this function does not compute the <a href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink. | 
|  | * | 
|  | * \sa norm() | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<int p> | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | EIGEN_DEVICE_FUNC inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real | 
|  | #else | 
|  | EIGEN_DEVICE_FUNC MatrixBase<Derived>::RealScalar | 
|  | #endif | 
|  | MatrixBase<Derived>::lpNorm() const | 
|  | { | 
|  | return internal::lpNorm_selector<Derived, p>::run(*this); | 
|  | } | 
|  |  | 
|  | //---------- implementation of isOrthogonal / isUnitary ---------- | 
|  |  | 
|  | /** \returns true if *this is approximately orthogonal to \a other, | 
|  | *          within the precision given by \a prec. | 
|  | * | 
|  | * Example: \include MatrixBase_isOrthogonal.cpp | 
|  | * Output: \verbinclude MatrixBase_isOrthogonal.out | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<typename OtherDerived> | 
|  | bool MatrixBase<Derived>::isOrthogonal | 
|  | (const MatrixBase<OtherDerived>& other, const RealScalar& prec) const | 
|  | { | 
|  | typename internal::nested_eval<Derived,2>::type nested(derived()); | 
|  | typename internal::nested_eval<OtherDerived,2>::type otherNested(other.derived()); | 
|  | return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); | 
|  | } | 
|  |  | 
|  | /** \returns true if *this is approximately an unitary matrix, | 
|  | *          within the precision given by \a prec. In the case where the \a Scalar | 
|  | *          type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. | 
|  | * | 
|  | * \note This can be used to check whether a family of vectors forms an orthonormal basis. | 
|  | *       Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an | 
|  | *       orthonormal basis. | 
|  | * | 
|  | * Example: \include MatrixBase_isUnitary.cpp | 
|  | * Output: \verbinclude MatrixBase_isUnitary.out | 
|  | */ | 
|  | template<typename Derived> | 
|  | bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const | 
|  | { | 
|  | typename internal::nested_eval<Derived,1>::type self(derived()); | 
|  | for(Index i = 0; i < cols(); ++i) | 
|  | { | 
|  | if(!internal::isApprox(self.col(i).squaredNorm(), static_cast<RealScalar>(1), prec)) | 
|  | return false; | 
|  | for(Index j = 0; j < i; ++j) | 
|  | if(!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast<Scalar>(1), prec)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_DOT_H |