|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_MATHFUNCTIONS_H | 
|  | #define EIGEN_MATHFUNCTIONS_H | 
|  |  | 
|  | // source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html | 
|  | // TODO this should better be moved to NumTraits | 
|  | #define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | // On WINCE, std::abs is defined for int only, so let's defined our own overloads: | 
|  | // This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too. | 
|  | #if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500 | 
|  | long        abs(long        x) { return (labs(x));  } | 
|  | double      abs(double      x) { return (fabs(x));  } | 
|  | float       abs(float       x) { return (fabsf(x)); } | 
|  | long double abs(long double x) { return (fabsl(x)); } | 
|  | #endif | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \internal \class global_math_functions_filtering_base | 
|  | * | 
|  | * What it does: | 
|  | * Defines a typedef 'type' as follows: | 
|  | * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then | 
|  | *   global_math_functions_filtering_base<T>::type is a typedef for it. | 
|  | * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T. | 
|  | * | 
|  | * How it's used: | 
|  | * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. | 
|  | * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know | 
|  | * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>. | 
|  | * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization | 
|  | * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it. | 
|  | * | 
|  | * How it's implemented: | 
|  | * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace | 
|  | * the typename dummy by an integer template parameter, it doesn't work anymore! | 
|  | */ | 
|  |  | 
|  | template<typename T, typename dummy = void> | 
|  | struct global_math_functions_filtering_base | 
|  | { | 
|  | typedef T type; | 
|  | }; | 
|  |  | 
|  | template<typename T> struct always_void { typedef void type; }; | 
|  |  | 
|  | template<typename T> | 
|  | struct global_math_functions_filtering_base | 
|  | <T, | 
|  | typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type | 
|  | > | 
|  | { | 
|  | typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; | 
|  | }; | 
|  |  | 
|  | #define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type> | 
|  | #define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of real                                                 * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
|  | struct real_default_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | return x; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct real_default_impl<Scalar,true> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | using std::real; | 
|  | return real(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> struct real_impl : real_default_impl<Scalar> {}; | 
|  |  | 
|  | #if defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | template<typename T> | 
|  | struct real_impl<std::complex<T> > | 
|  | { | 
|  | typedef T RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline T run(const std::complex<T>& x) | 
|  | { | 
|  | return x.real(); | 
|  | } | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct real_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of imag                                                 * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
|  | struct imag_default_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar&) | 
|  | { | 
|  | return RealScalar(0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct imag_default_impl<Scalar,true> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | using std::imag; | 
|  | return imag(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {}; | 
|  |  | 
|  | #if defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | template<typename T> | 
|  | struct imag_impl<std::complex<T> > | 
|  | { | 
|  | typedef T RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline T run(const std::complex<T>& x) | 
|  | { | 
|  | return x.imag(); | 
|  | } | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct imag_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of real_ref                                             * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct real_ref_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar& run(Scalar& x) | 
|  | { | 
|  | return reinterpret_cast<RealScalar*>(&x)[0]; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline const RealScalar& run(const Scalar& x) | 
|  | { | 
|  | return reinterpret_cast<const RealScalar*>(&x)[0]; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct real_ref_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real & type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of imag_ref                                             * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsComplex> | 
|  | struct imag_ref_default_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar& run(Scalar& x) | 
|  | { | 
|  | return reinterpret_cast<RealScalar*>(&x)[1]; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline const RealScalar& run(const Scalar& x) | 
|  | { | 
|  | return reinterpret_cast<RealScalar*>(&x)[1]; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct imag_ref_default_impl<Scalar, false> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline Scalar run(Scalar&) | 
|  | { | 
|  | return Scalar(0); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline const Scalar run(const Scalar&) | 
|  | { | 
|  | return Scalar(0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct imag_ref_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real & type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of conj                                                 * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
|  | struct conj_default_impl | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | return x; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct conj_default_impl<Scalar,true> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | using std::conj; | 
|  | return conj(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> struct conj_impl : conj_default_impl<Scalar> {}; | 
|  |  | 
|  | #if defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | template<typename T> | 
|  | struct conj_impl<std::complex<T> > | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline std::complex<T> run(const std::complex<T>& x) | 
|  | { | 
|  | return std::complex<T>(x.real(), -x.imag()); | 
|  | } | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct conj_retval | 
|  | { | 
|  | typedef Scalar type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of abs2                                                 * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar,bool IsComplex> | 
|  | struct abs2_impl_default | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | return x*x; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct abs2_impl_default<Scalar, true> // IsComplex | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | return real(x)*real(x) + imag(x)*imag(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct abs2_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct abs2_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of norm1                                                * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsComplex> | 
|  | struct norm1_default_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(abs); | 
|  | return abs(real(x)) + abs(imag(x)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct norm1_default_impl<Scalar, false> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(abs); | 
|  | return abs(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct norm1_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of hypot                                                * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar> struct hypot_impl; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct hypot_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of cast                                                 * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename OldType, typename NewType> | 
|  | struct cast_impl | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline NewType run(const OldType& x) | 
|  | { | 
|  | return static_cast<NewType>(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // here, for once, we're plainly returning NewType: we don't want cast to do weird things. | 
|  |  | 
|  | template<typename OldType, typename NewType> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline NewType cast(const OldType& x) | 
|  | { | 
|  | return cast_impl<OldType, NewType>::run(x); | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of round                                                   * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | template<typename Scalar> | 
|  | struct round_impl { | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) | 
|  | EIGEN_USING_STD_MATH(round); | 
|  | return round(x); | 
|  | } | 
|  | }; | 
|  | #else | 
|  | template<typename Scalar> | 
|  | struct round_impl | 
|  | { | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) | 
|  | EIGEN_USING_STD_MATH(floor); | 
|  | EIGEN_USING_STD_MATH(ceil); | 
|  | return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5)); | 
|  | } | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct round_retval | 
|  | { | 
|  | typedef Scalar type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of arg                                                     * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | template<typename Scalar> | 
|  | struct arg_impl { | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | #if defined(EIGEN_HIP_DEVICE_COMPILE) | 
|  | // HIP does not seem to have a native device side implementation for the math routine "arg" | 
|  | using std::arg; | 
|  | #else | 
|  | EIGEN_USING_STD_MATH(arg); | 
|  | #endif | 
|  | return arg(x); | 
|  | } | 
|  | }; | 
|  | #else | 
|  | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
|  | struct arg_default_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct arg_default_impl<Scalar,true> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(arg); | 
|  | return arg(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {}; | 
|  | #endif | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct arg_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of expm1                                                   * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | // This implementation is based on GSL Math's expm1. | 
|  | namespace std_fallback { | 
|  | // fallback expm1 implementation in case there is no expm1(Scalar) function in namespace of Scalar, | 
|  | // or that there is no suitable std::expm1 function available. Implementation | 
|  | // attributed to Kahan. See: http://www.plunk.org/~hatch/rightway.php. | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC inline Scalar expm1(const Scalar& x) { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | EIGEN_USING_STD_MATH(exp); | 
|  | Scalar u = exp(x); | 
|  | if (numext::equal_strict(u, Scalar(1))) { | 
|  | return x; | 
|  | } | 
|  | Scalar um1 = u - RealScalar(1); | 
|  | if (numext::equal_strict(um1, Scalar(-1))) { | 
|  | return RealScalar(-1); | 
|  | } | 
|  |  | 
|  | EIGEN_USING_STD_MATH(log); | 
|  | return (u - RealScalar(1)) * x / log(u); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct expm1_impl { | 
|  | EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | using std::expm1; | 
|  | #endif | 
|  | using std_fallback::expm1; | 
|  | return expm1(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct expm1_retval | 
|  | { | 
|  | typedef Scalar type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of log1p                                                   * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | namespace std_fallback { | 
|  | // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar, | 
|  | // or that there is no suitable std::log1p function available | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_USING_STD_MATH(log); | 
|  | Scalar x1p = RealScalar(1) + x; | 
|  | return numext::equal_strict(x1p, Scalar(1)) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) ); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct log1p_impl { | 
|  | EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | using std::log1p; | 
|  | #endif | 
|  | using std_fallback::log1p; | 
|  | return log1p(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct log1p_retval | 
|  | { | 
|  | typedef Scalar type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of pow                                                  * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger> | 
|  | struct pow_impl | 
|  | { | 
|  | //typedef Scalar retval; | 
|  | typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type; | 
|  | static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(pow); | 
|  | return pow(x, y); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename ScalarX,typename ScalarY> | 
|  | struct pow_impl<ScalarX,ScalarY, true> | 
|  | { | 
|  | typedef ScalarX result_type; | 
|  | static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y) | 
|  | { | 
|  | ScalarX res(1); | 
|  | eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0); | 
|  | if(y & 1) res *= x; | 
|  | y >>= 1; | 
|  | while(y) | 
|  | { | 
|  | x *= x; | 
|  | if(y&1) res *= x; | 
|  | y >>= 1; | 
|  | } | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of random                                               * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, | 
|  | bool IsComplex, | 
|  | bool IsInteger> | 
|  | struct random_default_impl {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct random_retval | 
|  | { | 
|  | typedef Scalar type; | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y); | 
|  | template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(); | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct random_default_impl<Scalar, false, false> | 
|  | { | 
|  | static inline Scalar run(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX); | 
|  | } | 
|  | static inline Scalar run() | 
|  | { | 
|  | return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | meta_floor_log2_terminate, | 
|  | meta_floor_log2_move_up, | 
|  | meta_floor_log2_move_down, | 
|  | meta_floor_log2_bogus | 
|  | }; | 
|  |  | 
|  | template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector | 
|  | { | 
|  | enum { middle = (lower + upper) / 2, | 
|  | value = (upper <= lower + 1) ? int(meta_floor_log2_terminate) | 
|  | : (n < (1 << middle)) ? int(meta_floor_log2_move_down) | 
|  | : (n==0) ? int(meta_floor_log2_bogus) | 
|  | : int(meta_floor_log2_move_up) | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template<unsigned int n, | 
|  | int lower = 0, | 
|  | int upper = sizeof(unsigned int) * CHAR_BIT - 1, | 
|  | int selector = meta_floor_log2_selector<n, lower, upper>::value> | 
|  | struct meta_floor_log2 {}; | 
|  |  | 
|  | template<unsigned int n, int lower, int upper> | 
|  | struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down> | 
|  | { | 
|  | enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value }; | 
|  | }; | 
|  |  | 
|  | template<unsigned int n, int lower, int upper> | 
|  | struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up> | 
|  | { | 
|  | enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value }; | 
|  | }; | 
|  |  | 
|  | template<unsigned int n, int lower, int upper> | 
|  | struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate> | 
|  | { | 
|  | enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; | 
|  | }; | 
|  |  | 
|  | template<unsigned int n, int lower, int upper> | 
|  | struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus> | 
|  | { | 
|  | // no value, error at compile time | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct random_default_impl<Scalar, false, true> | 
|  | { | 
|  | static inline Scalar run(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX; | 
|  | if(y<x) | 
|  | return x; | 
|  | // the following difference might overflow on a 32 bits system, | 
|  | // but since y>=x the result converted to an unsigned long is still correct. | 
|  | std::size_t range = ScalarX(y)-ScalarX(x); | 
|  | std::size_t offset = 0; | 
|  | // rejection sampling | 
|  | std::size_t divisor = 1; | 
|  | std::size_t multiplier = 1; | 
|  | if(range<RAND_MAX) divisor = (std::size_t(RAND_MAX)+1)/(range+1); | 
|  | else               multiplier = 1 + range/(std::size_t(RAND_MAX)+1); | 
|  | do { | 
|  | offset = (std::size_t(std::rand()) * multiplier) / divisor; | 
|  | } while (offset > range); | 
|  | return Scalar(ScalarX(x) + offset); | 
|  | } | 
|  |  | 
|  | static inline Scalar run() | 
|  | { | 
|  | #ifdef EIGEN_MAKING_DOCS | 
|  | return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10)); | 
|  | #else | 
|  | enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value, | 
|  | scalar_bits = sizeof(Scalar) * CHAR_BIT, | 
|  | shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)), | 
|  | offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0 | 
|  | }; | 
|  | return Scalar((std::rand() >> shift) - offset); | 
|  | #endif | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct random_default_impl<Scalar, true, false> | 
|  | { | 
|  | static inline Scalar run(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | return Scalar(random(real(x), real(y)), | 
|  | random(imag(x), imag(y))); | 
|  | } | 
|  | static inline Scalar run() | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | return Scalar(random<RealScalar>(), random<RealScalar>()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); | 
|  | } | 
|  |  | 
|  | // Implementation of is* functions | 
|  |  | 
|  | // std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang. | 
|  | #if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG) | 
|  | #define EIGEN_USE_STD_FPCLASSIFY 1 | 
|  | #else | 
|  | #define EIGEN_USE_STD_FPCLASSIFY 0 | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | typename internal::enable_if<internal::is_integral<T>::value,bool>::type | 
|  | isnan_impl(const T&) { return false; } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | typename internal::enable_if<internal::is_integral<T>::value,bool>::type | 
|  | isinf_impl(const T&) { return false; } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | typename internal::enable_if<internal::is_integral<T>::value,bool>::type | 
|  | isfinite_impl(const T&) { return true; } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type | 
|  | isfinite_impl(const T& x) | 
|  | { | 
|  | #if defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | return (::isfinite)(x); | 
|  | #elif EIGEN_USE_STD_FPCLASSIFY | 
|  | using std::isfinite; | 
|  | return isfinite EIGEN_NOT_A_MACRO (x); | 
|  | #else | 
|  | return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type | 
|  | isinf_impl(const T& x) | 
|  | { | 
|  | #if defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | return (::isinf)(x); | 
|  | #elif EIGEN_USE_STD_FPCLASSIFY | 
|  | using std::isinf; | 
|  | return isinf EIGEN_NOT_A_MACRO (x); | 
|  | #else | 
|  | return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type | 
|  | isnan_impl(const T& x) | 
|  | { | 
|  | #if defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | return (::isnan)(x); | 
|  | #elif EIGEN_USE_STD_FPCLASSIFY | 
|  | using std::isnan; | 
|  | return isnan EIGEN_NOT_A_MACRO (x); | 
|  | #else | 
|  | return x != x; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if (!EIGEN_USE_STD_FPCLASSIFY) | 
|  |  | 
|  | #if EIGEN_COMP_MSVC | 
|  |  | 
|  | template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x) | 
|  | { | 
|  | return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF; | 
|  | } | 
|  |  | 
|  | //MSVC defines a _isnan builtin function, but for double only | 
|  | EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; } | 
|  | EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x)      { return _isnan(x)!=0; } | 
|  | EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x)       { return _isnan(x)!=0; } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); } | 
|  | EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x)      { return isinf_msvc_helper(x); } | 
|  | EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x)       { return isinf_msvc_helper(x); } | 
|  |  | 
|  | #elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC) | 
|  |  | 
|  | #if EIGEN_GNUC_AT_LEAST(5,0) | 
|  | #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only"))) | 
|  | #else | 
|  | // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol), | 
|  | //      while the second prevent too aggressive optimizations in fast-math mode: | 
|  | #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only"))) | 
|  | #endif | 
|  |  | 
|  | template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); } | 
|  | template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x)      { return __builtin_isnan(x); } | 
|  | template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x)       { return __builtin_isnan(x); } | 
|  | template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x)      { return __builtin_isinf(x); } | 
|  | template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x)       { return __builtin_isinf(x); } | 
|  | template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); } | 
|  |  | 
|  | #undef EIGEN_TMP_NOOPT_ATTRIB | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #endif | 
|  |  | 
|  | // The following overload are defined at the end of this file | 
|  | template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x); | 
|  | template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x); | 
|  | template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x); | 
|  |  | 
|  | template<typename T> T generic_fast_tanh_float(const T& a_x); | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Generic math functions                                                    * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | namespace numext { | 
|  |  | 
|  | #if (!defined(EIGEN_GPUCC) || defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC)) && !defined(__SYCL_DEVICE_ONLY__) | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(min); | 
|  | return min EIGEN_NOT_A_MACRO (x,y); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(max); | 
|  | return max EIGEN_NOT_A_MACRO (x,y); | 
|  | } | 
|  |  | 
|  | #elif defined(__SYCL_DEVICE_ONLY__) | 
|  | template<typename T> | 
|  | EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) | 
|  | { | 
|  | return y < x ? y : x; | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) | 
|  | { | 
|  | return x < y ? y : x; | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE int mini(const int& x, const int& y) | 
|  | { | 
|  | return cl::sycl::min(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE int maxi(const int& x, const int& y) | 
|  | { | 
|  | return cl::sycl::max(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE unsigned int mini(const unsigned int& x, const unsigned int& y) | 
|  | { | 
|  | return cl::sycl::min(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE unsigned int maxi(const unsigned int& x, const unsigned int& y) | 
|  | { | 
|  | return cl::sycl::max(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE  long mini(const long & x, const long & y) | 
|  | { | 
|  | return cl::sycl::min(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE  long maxi(const long & x, const long & y) | 
|  | { | 
|  | return cl::sycl::max(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE unsigned long mini(const unsigned long& x, const unsigned long& y) | 
|  | { | 
|  | return cl::sycl::min(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE unsigned long maxi(const unsigned long& x, const unsigned long& y) | 
|  | { | 
|  | return cl::sycl::max(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y) | 
|  | { | 
|  | return cl::sycl::fmin(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y) | 
|  | { | 
|  | return cl::sycl::fmax(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE double mini(const double& x, const double& y) | 
|  | { | 
|  | return cl::sycl::fmin(x,y); | 
|  | } | 
|  |  | 
|  | EIGEN_ALWAYS_INLINE double maxi(const double& x, const double& y) | 
|  | { | 
|  | return cl::sycl::fmax(x,y); | 
|  | } | 
|  |  | 
|  | #else | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) | 
|  | { | 
|  | return y < x ? y : x; | 
|  | } | 
|  | template<> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y) | 
|  | { | 
|  | return fminf(x, y); | 
|  | } | 
|  | template<> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE double mini(const double& x, const double& y) | 
|  | { | 
|  | return fmin(x, y); | 
|  | } | 
|  | template<> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE long double mini(const long double& x, const long double& y) | 
|  | { | 
|  | return fminl(x, y); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) | 
|  | { | 
|  | return x < y ? y : x; | 
|  | } | 
|  | template<> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y) | 
|  | { | 
|  | return fmaxf(x, y); | 
|  | } | 
|  | template<> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE double maxi(const double& x, const double& y) | 
|  | { | 
|  | return fmax(x, y); | 
|  | } | 
|  | template<> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE long double maxi(const long double& x, const long double& y) | 
|  | { | 
|  | return fmaxl(x, y); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) | 
|  | { | 
|  | return internal::real_ref_impl<Scalar>::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) | 
|  | { | 
|  | return internal::imag_ref_impl<Scalar>::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline bool abs2(bool x) { return x; } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   log1p(float x) { return cl::sycl::log1p(x); } | 
|  | EIGEN_ALWAYS_INLINE double  log1p(double x) { return cl::sycl::log1p(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float log1p(const float &x) { return ::log1pf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double log1p(const double &x) { return ::log1p(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename ScalarX,typename ScalarY> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y) | 
|  | { | 
|  | return internal::pow_impl<ScalarX,ScalarY>::run(x, y); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   pow(float x, float y) { return cl::sycl::pow(x, y); } | 
|  | EIGEN_ALWAYS_INLINE double  pow(double x, double y) { return cl::sycl::pow(x, y); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | template<typename T> EIGEN_DEVICE_FUNC bool (isnan)   (const T &x) { return internal::isnan_impl(x); } | 
|  | template<typename T> EIGEN_DEVICE_FUNC bool (isinf)   (const T &x) { return internal::isinf_impl(x); } | 
|  | template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   isnan(float x) { return cl::sycl::isnan(x); } | 
|  | EIGEN_ALWAYS_INLINE double  isnan(double x) { return cl::sycl::isnan(x); } | 
|  | EIGEN_ALWAYS_INLINE float   isinf(float x) { return cl::sycl::isinf(x); } | 
|  | EIGEN_ALWAYS_INLINE double  isinf(double x) { return cl::sycl::isinf(x); } | 
|  | EIGEN_ALWAYS_INLINE float   isfinite(float x) { return cl::sycl::isfinite(x); } | 
|  | EIGEN_ALWAYS_INLINE double  isfinite(double x) { return cl::sycl::isfinite(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   round(float x) { return cl::sycl::round(x); } | 
|  | EIGEN_ALWAYS_INLINE double  round(double x) { return cl::sycl::round(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | T (floor)(const T& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(floor); | 
|  | return floor(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   floor(float x) { return cl::sycl::floor(x); } | 
|  | EIGEN_ALWAYS_INLINE double  floor(double x) { return cl::sycl::floor(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float floor(const float &x) { return ::floorf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double floor(const double &x) { return ::floor(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | T (ceil)(const T& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(ceil); | 
|  | return ceil(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   ceil(float x) { return cl::sycl::ceil(x); } | 
|  | EIGEN_ALWAYS_INLINE double  ceil(double x) { return cl::sycl::ceil(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float ceil(const float &x) { return ::ceilf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double ceil(const double &x) { return ::ceil(x); } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /** Log base 2 for 32 bits positive integers. | 
|  | * Conveniently returns 0 for x==0. */ | 
|  | inline int log2(int x) | 
|  | { | 
|  | eigen_assert(x>=0); | 
|  | unsigned int v(x); | 
|  | static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; | 
|  | v |= v >> 1; | 
|  | v |= v >> 2; | 
|  | v |= v >> 4; | 
|  | v |= v >> 8; | 
|  | v |= v >> 16; | 
|  | return table[(v * 0x07C4ACDDU) >> 27]; | 
|  | } | 
|  |  | 
|  | /** \returns the square root of \a x. | 
|  | * | 
|  | * It is essentially equivalent to \code using std::sqrt; return sqrt(x); \endcode, | 
|  | * but slightly faster for float/double and some compilers (e.g., gcc), thanks to | 
|  | * specializations when SSE is enabled. | 
|  | * | 
|  | * It's usage is justified in performance critical functions, like norm/normalize. | 
|  | */ | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T sqrt(const T &x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(sqrt); | 
|  | return sqrt(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   sqrt(float x) { return cl::sycl::sqrt(x); } | 
|  | EIGEN_ALWAYS_INLINE double  sqrt(double x) { return cl::sycl::sqrt(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T log(const T &x) { | 
|  | EIGEN_USING_STD_MATH(log); | 
|  | return log(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   log(float x) { return cl::sycl::log(x); } | 
|  | EIGEN_ALWAYS_INLINE double  log(double x) { return cl::sycl::log(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float log(const float &x) { return ::logf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double log(const double &x) { return ::log(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type | 
|  | abs(const T &x) { | 
|  | EIGEN_USING_STD_MATH(abs); | 
|  | return abs(x); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type | 
|  | abs(const T &x) { | 
|  | return x; | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   abs(float x) { return cl::sycl::fabs(x); } | 
|  | EIGEN_ALWAYS_INLINE double  abs(double x) { return cl::sycl::fabs(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float abs(const float &x) { return ::fabsf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double abs(const double &x) { return ::fabs(x); } | 
|  |  | 
|  | template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float abs(const std::complex<float>& x) { | 
|  | return ::hypotf(x.real(), x.imag()); | 
|  | } | 
|  |  | 
|  | template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double abs(const std::complex<double>& x) { | 
|  | return ::hypot(x.real(), x.imag()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T exp(const T &x) { | 
|  | EIGEN_USING_STD_MATH(exp); | 
|  | return exp(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   exp(float x) { return cl::sycl::exp(x); } | 
|  | EIGEN_ALWAYS_INLINE double  exp(double x) { return cl::sycl::exp(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float exp(const float &x) { return ::expf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double exp(const double &x) { return ::exp(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | std::complex<float> exp(const std::complex<float>& x) { | 
|  | float com = ::expf(x.real()); | 
|  | float res_real = com * ::cosf(x.imag()); | 
|  | float res_imag = com * ::sinf(x.imag()); | 
|  | return std::complex<float>(res_real, res_imag); | 
|  | } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | std::complex<double> exp(const std::complex<double>& x) { | 
|  | double com = ::exp(x.real()); | 
|  | double res_real = com * ::cos(x.imag()); | 
|  | double res_imag = com * ::sin(x.imag()); | 
|  | return std::complex<double>(res_real, res_imag); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(expm1, Scalar) expm1(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(expm1, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   expm1(float x) { return cl::sycl::expm1(x); } | 
|  | EIGEN_ALWAYS_INLINE double  expm1(double x) { return cl::sycl::expm1(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float expm1(const float &x) { return ::expm1f(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double expm1(const double &x) { return ::expm1(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T cos(const T &x) { | 
|  | EIGEN_USING_STD_MATH(cos); | 
|  | return cos(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   cos(float x) { return cl::sycl::cos(x); } | 
|  | EIGEN_ALWAYS_INLINE double  cos(double x) { return cl::sycl::cos(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float cos(const float &x) { return ::cosf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double cos(const double &x) { return ::cos(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T sin(const T &x) { | 
|  | EIGEN_USING_STD_MATH(sin); | 
|  | return sin(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   sin(float x) { return cl::sycl::sin(x); } | 
|  | EIGEN_ALWAYS_INLINE double  sin(double x) { return cl::sycl::sin(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float sin(const float &x) { return ::sinf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double sin(const double &x) { return ::sin(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T tan(const T &x) { | 
|  | EIGEN_USING_STD_MATH(tan); | 
|  | return tan(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   tan(float x) { return cl::sycl::tan(x); } | 
|  | EIGEN_ALWAYS_INLINE double  tan(double x) { return cl::sycl::tan(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float tan(const float &x) { return ::tanf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double tan(const double &x) { return ::tan(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T acos(const T &x) { | 
|  | EIGEN_USING_STD_MATH(acos); | 
|  | return acos(x); | 
|  | } | 
|  |  | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T acosh(const T &x) { | 
|  | EIGEN_USING_STD_MATH(acosh); | 
|  | return acosh(x); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   acos(float x) { return cl::sycl::acos(x); } | 
|  | EIGEN_ALWAYS_INLINE double  acos(double x) { return cl::sycl::acos(x); } | 
|  | EIGEN_ALWAYS_INLINE float   acosh(float x) { return cl::sycl::acosh(x); } | 
|  | EIGEN_ALWAYS_INLINE double  acosh(double x) { return cl::sycl::acosh(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float acos(const float &x) { return ::acosf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double acos(const double &x) { return ::acos(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T asin(const T &x) { | 
|  | EIGEN_USING_STD_MATH(asin); | 
|  | return asin(x); | 
|  | } | 
|  |  | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T asinh(const T &x) { | 
|  | EIGEN_USING_STD_MATH(asinh); | 
|  | return asinh(x); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   asin(float x) { return cl::sycl::asin(x); } | 
|  | EIGEN_ALWAYS_INLINE double  asin(double x) { return cl::sycl::asin(x); } | 
|  | EIGEN_ALWAYS_INLINE float   asinh(float x) { return cl::sycl::asinh(x); } | 
|  | EIGEN_ALWAYS_INLINE double  asinh(double x) { return cl::sycl::asinh(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float asin(const float &x) { return ::asinf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double asin(const double &x) { return ::asin(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T atan(const T &x) { | 
|  | EIGEN_USING_STD_MATH(atan); | 
|  | return atan(x); | 
|  | } | 
|  |  | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T atanh(const T &x) { | 
|  | EIGEN_USING_STD_MATH(atanh); | 
|  | return atanh(x); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   atan(float x) { return cl::sycl::atan(x); } | 
|  | EIGEN_ALWAYS_INLINE double  atan(double x) { return cl::sycl::atan(x); } | 
|  | EIGEN_ALWAYS_INLINE float   atanh(float x) { return cl::sycl::atanh(x); } | 
|  | EIGEN_ALWAYS_INLINE double  atanh(double x) { return cl::sycl::atanh(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float atan(const float &x) { return ::atanf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double atan(const double &x) { return ::atan(x); } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T cosh(const T &x) { | 
|  | EIGEN_USING_STD_MATH(cosh); | 
|  | return cosh(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   cosh(float x) { return cl::sycl::cosh(x); } | 
|  | EIGEN_ALWAYS_INLINE double  cosh(double x) { return cl::sycl::cosh(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float cosh(const float &x) { return ::coshf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double cosh(const double &x) { return ::cosh(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T sinh(const T &x) { | 
|  | EIGEN_USING_STD_MATH(sinh); | 
|  | return sinh(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   sinh(float x) { return cl::sycl::sinh(x); } | 
|  | EIGEN_ALWAYS_INLINE double  sinh(double x) { return cl::sycl::sinh(x); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float sinh(const float &x) { return ::sinhf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double sinh(const double &x) { return ::sinh(x); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T tanh(const T &x) { | 
|  | EIGEN_USING_STD_MATH(tanh); | 
|  | return tanh(x); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   tanh(float x) { return cl::sycl::tanh(x); } | 
|  | EIGEN_ALWAYS_INLINE double  tanh(double x) { return cl::sycl::tanh(x); } | 
|  | #elif (!defined(EIGEN_GPUCC)) && EIGEN_FAST_MATH | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float tanh(float x) { return internal::generic_fast_tanh_float(x); } | 
|  | #endif | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float tanh(const float &x) { return ::tanhf(x); } | 
|  |  | 
|  | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double tanh(const double &x) { return ::tanh(x); } | 
|  | #endif | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | T fmod(const T& a, const T& b) { | 
|  | EIGEN_USING_STD_MATH(fmod); | 
|  | return fmod(a, b); | 
|  | } | 
|  |  | 
|  | #if defined(__SYCL_DEVICE_ONLY__) | 
|  | EIGEN_ALWAYS_INLINE float   fmod(float x, float y) { return cl::sycl::fmod(x, y); } | 
|  | EIGEN_ALWAYS_INLINE double  fmod(double x, double y) { return cl::sycl::fmod(x, y); } | 
|  | #endif // defined(__SYCL_DEVICE_ONLY__) | 
|  |  | 
|  | #if defined(EIGEN_GPUCC) | 
|  | template <> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | float fmod(const float& a, const float& b) { | 
|  | return ::fmodf(a, b); | 
|  | } | 
|  |  | 
|  | template <> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE | 
|  | double fmod(const double& a, const double& b) { | 
|  | return ::fmod(a, b); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | } // end namespace numext | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x) | 
|  | { | 
|  | return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x)); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x) | 
|  | { | 
|  | return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x)); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x) | 
|  | { | 
|  | return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x)); | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of fuzzy comparisons                                       * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, | 
|  | bool IsComplex, | 
|  | bool IsInteger> | 
|  | struct scalar_fuzzy_default_impl {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct scalar_fuzzy_default_impl<Scalar, false, false> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | template<typename OtherScalar> EIGEN_DEVICE_FUNC | 
|  | static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) | 
|  | { | 
|  | return numext::abs(x) <= numext::abs(y) * prec; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) | 
|  | { | 
|  | return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) | 
|  | { | 
|  | return x <= y || isApprox(x, y, prec); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct scalar_fuzzy_default_impl<Scalar, false, true> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | template<typename OtherScalar> EIGEN_DEVICE_FUNC | 
|  | static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) | 
|  | { | 
|  | return x == Scalar(0); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) | 
|  | { | 
|  | return x == y; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) | 
|  | { | 
|  | return x <= y; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct scalar_fuzzy_default_impl<Scalar, true, false> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | template<typename OtherScalar> EIGEN_DEVICE_FUNC | 
|  | static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) | 
|  | { | 
|  | return numext::abs2(x) <= numext::abs2(y) * prec * prec; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) | 
|  | { | 
|  | return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; | 
|  |  | 
|  | template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC | 
|  | inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, | 
|  | const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) | 
|  | { | 
|  | return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> EIGEN_DEVICE_FUNC | 
|  | inline bool isApprox(const Scalar& x, const Scalar& y, | 
|  | const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) | 
|  | { | 
|  | return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> EIGEN_DEVICE_FUNC | 
|  | inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, | 
|  | const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) | 
|  | { | 
|  | return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision); | 
|  | } | 
|  |  | 
|  | /****************************************** | 
|  | ***  The special case of the  bool type *** | 
|  | ******************************************/ | 
|  |  | 
|  | template<> struct random_impl<bool> | 
|  | { | 
|  | static inline bool run() | 
|  | { | 
|  | return random<int>(0,1)==0 ? false : true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> struct scalar_fuzzy_impl<bool> | 
|  | { | 
|  | typedef bool RealScalar; | 
|  |  | 
|  | template<typename OtherScalar> EIGEN_DEVICE_FUNC | 
|  | static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) | 
|  | { | 
|  | return !x; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApprox(bool x, bool y, bool) | 
|  | { | 
|  | return x == y; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) | 
|  | { | 
|  | return (!x) || y; | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_MATHFUNCTIONS_H |