|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) | 
|  | // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_MATHFUNCTIONSIMPL_H | 
|  | #define EIGEN_MATHFUNCTIONSIMPL_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \internal \returns the hyperbolic tan of \a a (coeff-wise) | 
|  | Doesn't do anything fancy, just a 13/6-degree rational interpolant which | 
|  | is accurate up to a couple of ulp in the range [-9, 9], outside of which | 
|  | the tanh(x) = +/-1. | 
|  |  | 
|  | This implementation works on both scalars and packets. | 
|  | */ | 
|  | template<typename T> | 
|  | T generic_fast_tanh_float(const T& a_x) | 
|  | { | 
|  | // Clamp the inputs to the range [-9, 9] since anything outside | 
|  | // this range is +/-1.0f in single-precision. | 
|  | const T plus_9 = pset1<T>(9.f); | 
|  | const T minus_9 = pset1<T>(-9.f); | 
|  | const T x = pmax(pmin(a_x, plus_9), minus_9); | 
|  | // The monomial coefficients of the numerator polynomial (odd). | 
|  | const T alpha_1 = pset1<T>(4.89352455891786e-03f); | 
|  | const T alpha_3 = pset1<T>(6.37261928875436e-04f); | 
|  | const T alpha_5 = pset1<T>(1.48572235717979e-05f); | 
|  | const T alpha_7 = pset1<T>(5.12229709037114e-08f); | 
|  | const T alpha_9 = pset1<T>(-8.60467152213735e-11f); | 
|  | const T alpha_11 = pset1<T>(2.00018790482477e-13f); | 
|  | const T alpha_13 = pset1<T>(-2.76076847742355e-16f); | 
|  |  | 
|  | // The monomial coefficients of the denominator polynomial (even). | 
|  | const T beta_0 = pset1<T>(4.89352518554385e-03f); | 
|  | const T beta_2 = pset1<T>(2.26843463243900e-03f); | 
|  | const T beta_4 = pset1<T>(1.18534705686654e-04f); | 
|  | const T beta_6 = pset1<T>(1.19825839466702e-06f); | 
|  |  | 
|  | // Since the polynomials are odd/even, we need x^2. | 
|  | const T x2 = pmul(x, x); | 
|  |  | 
|  | // Evaluate the numerator polynomial p. | 
|  | T p = pmadd(x2, alpha_13, alpha_11); | 
|  | p = pmadd(x2, p, alpha_9); | 
|  | p = pmadd(x2, p, alpha_7); | 
|  | p = pmadd(x2, p, alpha_5); | 
|  | p = pmadd(x2, p, alpha_3); | 
|  | p = pmadd(x2, p, alpha_1); | 
|  | p = pmul(x, p); | 
|  |  | 
|  | // Evaluate the denominator polynomial p. | 
|  | T q = pmadd(x2, beta_6, beta_4); | 
|  | q = pmadd(x2, q, beta_2); | 
|  | q = pmadd(x2, q, beta_0); | 
|  |  | 
|  | // Divide the numerator by the denominator. | 
|  | return pdiv(p, q); | 
|  | } | 
|  |  | 
|  | template<typename RealScalar> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
|  | RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(sqrt); | 
|  | RealScalar p, qp; | 
|  | p = numext::maxi(x,y); | 
|  | if(p==RealScalar(0)) return RealScalar(0); | 
|  | qp = numext::mini(y,x) / p; | 
|  | return p * sqrt(RealScalar(1) + qp*qp); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct hypot_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | static EIGEN_DEVICE_FUNC | 
|  | inline RealScalar run(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(abs); | 
|  | return positive_real_hypot<RealScalar>(abs(x), abs(y)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_MATHFUNCTIONSIMPL_H |