|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_REDUX_H | 
|  | #define EIGEN_REDUX_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // TODO | 
|  | //  * implement other kind of vectorization | 
|  | //  * factorize code | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Part 1 : the logic deciding a strategy for vectorization and unrolling | 
|  | ***************************************************************************/ | 
|  |  | 
|  | template<typename Func, typename Evaluator> | 
|  | struct redux_traits | 
|  | { | 
|  | public: | 
|  | typedef typename find_best_packet<typename Evaluator::Scalar,Evaluator::SizeAtCompileTime>::type PacketType; | 
|  | enum { | 
|  | PacketSize = unpacket_traits<PacketType>::size, | 
|  | InnerMaxSize = int(Evaluator::IsRowMajor) | 
|  | ? Evaluator::MaxColsAtCompileTime | 
|  | : Evaluator::MaxRowsAtCompileTime | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | MightVectorize = (int(Evaluator::Flags)&ActualPacketAccessBit) | 
|  | && (functor_traits<Func>::PacketAccess), | 
|  | MayLinearVectorize = bool(MightVectorize) && (int(Evaluator::Flags)&LinearAccessBit), | 
|  | MaySliceVectorize  = bool(MightVectorize) && int(InnerMaxSize)>=3*PacketSize | 
|  | }; | 
|  |  | 
|  | public: | 
|  | enum { | 
|  | Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) | 
|  | : int(MaySliceVectorize)  ? int(SliceVectorizedTraversal) | 
|  | : int(DefaultTraversal) | 
|  | }; | 
|  |  | 
|  | public: | 
|  | enum { | 
|  | Cost = Evaluator::SizeAtCompileTime == Dynamic ? HugeCost | 
|  | : Evaluator::SizeAtCompileTime * Evaluator::CoeffReadCost + (Evaluator::SizeAtCompileTime-1) * functor_traits<Func>::Cost, | 
|  | UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) | 
|  | }; | 
|  |  | 
|  | public: | 
|  | enum { | 
|  | Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling | 
|  | }; | 
|  |  | 
|  | #ifdef EIGEN_DEBUG_ASSIGN | 
|  | static void debug() | 
|  | { | 
|  | std::cerr << "Xpr: " << typeid(typename Evaluator::XprType).name() << std::endl; | 
|  | std::cerr.setf(std::ios::hex, std::ios::basefield); | 
|  | EIGEN_DEBUG_VAR(Evaluator::Flags) | 
|  | std::cerr.unsetf(std::ios::hex); | 
|  | EIGEN_DEBUG_VAR(InnerMaxSize) | 
|  | EIGEN_DEBUG_VAR(PacketSize) | 
|  | EIGEN_DEBUG_VAR(MightVectorize) | 
|  | EIGEN_DEBUG_VAR(MayLinearVectorize) | 
|  | EIGEN_DEBUG_VAR(MaySliceVectorize) | 
|  | EIGEN_DEBUG_VAR(Traversal) | 
|  | EIGEN_DEBUG_VAR(UnrollingLimit) | 
|  | EIGEN_DEBUG_VAR(Unrolling) | 
|  | std::cerr << std::endl; | 
|  | } | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Part 2 : unrollers | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /*** no vectorization ***/ | 
|  |  | 
|  | template<typename Func, typename Evaluator, int Start, int Length> | 
|  | struct redux_novec_unroller | 
|  | { | 
|  | enum { | 
|  | HalfLength = Length/2 | 
|  | }; | 
|  |  | 
|  | typedef typename Evaluator::Scalar Scalar; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func& func) | 
|  | { | 
|  | return func(redux_novec_unroller<Func, Evaluator, Start, HalfLength>::run(eval,func), | 
|  | redux_novec_unroller<Func, Evaluator, Start+HalfLength, Length-HalfLength>::run(eval,func)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func, typename Evaluator, int Start> | 
|  | struct redux_novec_unroller<Func, Evaluator, Start, 1> | 
|  | { | 
|  | enum { | 
|  | outer = Start / Evaluator::InnerSizeAtCompileTime, | 
|  | inner = Start % Evaluator::InnerSizeAtCompileTime | 
|  | }; | 
|  |  | 
|  | typedef typename Evaluator::Scalar Scalar; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static EIGEN_STRONG_INLINE Scalar run(const Evaluator &eval, const Func&) | 
|  | { | 
|  | return eval.coeffByOuterInner(outer, inner); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // This is actually dead code and will never be called. It is required | 
|  | // to prevent false warnings regarding failed inlining though | 
|  | // for 0 length run() will never be called at all. | 
|  | template<typename Func, typename Evaluator, int Start> | 
|  | struct redux_novec_unroller<Func, Evaluator, Start, 0> | 
|  | { | 
|  | typedef typename Evaluator::Scalar Scalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static EIGEN_STRONG_INLINE Scalar run(const Evaluator&, const Func&) { return Scalar(); } | 
|  | }; | 
|  |  | 
|  | /*** vectorization ***/ | 
|  |  | 
|  | template<typename Func, typename Evaluator, int Start, int Length> | 
|  | struct redux_vec_unroller | 
|  | { | 
|  | enum { | 
|  | PacketSize = redux_traits<Func, Evaluator>::PacketSize, | 
|  | HalfLength = Length/2 | 
|  | }; | 
|  |  | 
|  | typedef typename Evaluator::Scalar Scalar; | 
|  | typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar; | 
|  |  | 
|  | static EIGEN_STRONG_INLINE PacketScalar run(const Evaluator &eval, const Func& func) | 
|  | { | 
|  | return func.packetOp( | 
|  | redux_vec_unroller<Func, Evaluator, Start, HalfLength>::run(eval,func), | 
|  | redux_vec_unroller<Func, Evaluator, Start+HalfLength, Length-HalfLength>::run(eval,func) ); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func, typename Evaluator, int Start> | 
|  | struct redux_vec_unroller<Func, Evaluator, Start, 1> | 
|  | { | 
|  | enum { | 
|  | index = Start * redux_traits<Func, Evaluator>::PacketSize, | 
|  | outer = index / int(Evaluator::InnerSizeAtCompileTime), | 
|  | inner = index % int(Evaluator::InnerSizeAtCompileTime), | 
|  | alignment = Evaluator::Alignment | 
|  | }; | 
|  |  | 
|  | typedef typename Evaluator::Scalar Scalar; | 
|  | typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar; | 
|  |  | 
|  | static EIGEN_STRONG_INLINE PacketScalar run(const Evaluator &eval, const Func&) | 
|  | { | 
|  | return eval.template packetByOuterInner<alignment,PacketScalar>(outer, inner); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Part 3 : implementation of all cases | 
|  | ***************************************************************************/ | 
|  |  | 
|  | template<typename Func, typename Evaluator, | 
|  | int Traversal = redux_traits<Func, Evaluator>::Traversal, | 
|  | int Unrolling = redux_traits<Func, Evaluator>::Unrolling | 
|  | > | 
|  | struct redux_impl; | 
|  |  | 
|  | template<typename Func, typename Evaluator> | 
|  | struct redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling> | 
|  | { | 
|  | typedef typename Evaluator::Scalar Scalar; | 
|  |  | 
|  | template<typename XprType> | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE | 
|  | Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) | 
|  | { | 
|  | eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); | 
|  | Scalar res; | 
|  | res = eval.coeffByOuterInner(0, 0); | 
|  | for(Index i = 1; i < xpr.innerSize(); ++i) | 
|  | res = func(res, eval.coeffByOuterInner(0, i)); | 
|  | for(Index i = 1; i < xpr.outerSize(); ++i) | 
|  | for(Index j = 0; j < xpr.innerSize(); ++j) | 
|  | res = func(res, eval.coeffByOuterInner(i, j)); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func, typename Evaluator> | 
|  | struct redux_impl<Func,Evaluator, DefaultTraversal, CompleteUnrolling> | 
|  | : redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime> | 
|  | { | 
|  | typedef redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime> Base; | 
|  | typedef typename Evaluator::Scalar Scalar; | 
|  | template<typename XprType> | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE | 
|  | Scalar run(const Evaluator &eval, const Func& func, const XprType& /*xpr*/) | 
|  | { | 
|  | return Base::run(eval,func); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func, typename Evaluator> | 
|  | struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, NoUnrolling> | 
|  | { | 
|  | typedef typename Evaluator::Scalar Scalar; | 
|  | typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar; | 
|  |  | 
|  | template<typename XprType> | 
|  | static Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) | 
|  | { | 
|  | const Index size = xpr.size(); | 
|  |  | 
|  | const Index packetSize = redux_traits<Func, Evaluator>::PacketSize; | 
|  | const int packetAlignment = unpacket_traits<PacketScalar>::alignment; | 
|  | enum { | 
|  | alignment0 = (bool(Evaluator::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned), | 
|  | alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Evaluator::Alignment) | 
|  | }; | 
|  | const Index alignedStart = internal::first_default_aligned(xpr); | 
|  | const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize); | 
|  | const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize); | 
|  | const Index alignedEnd2 = alignedStart + alignedSize2; | 
|  | const Index alignedEnd  = alignedStart + alignedSize; | 
|  | Scalar res; | 
|  | if(alignedSize) | 
|  | { | 
|  | PacketScalar packet_res0 = eval.template packet<alignment,PacketScalar>(alignedStart); | 
|  | if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop | 
|  | { | 
|  | PacketScalar packet_res1 = eval.template packet<alignment,PacketScalar>(alignedStart+packetSize); | 
|  | for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize) | 
|  | { | 
|  | packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment,PacketScalar>(index)); | 
|  | packet_res1 = func.packetOp(packet_res1, eval.template packet<alignment,PacketScalar>(index+packetSize)); | 
|  | } | 
|  |  | 
|  | packet_res0 = func.packetOp(packet_res0,packet_res1); | 
|  | if(alignedEnd>alignedEnd2) | 
|  | packet_res0 = func.packetOp(packet_res0, eval.template packet<alignment,PacketScalar>(alignedEnd2)); | 
|  | } | 
|  | res = func.predux(packet_res0); | 
|  |  | 
|  | for(Index index = 0; index < alignedStart; ++index) | 
|  | res = func(res,eval.coeff(index)); | 
|  |  | 
|  | for(Index index = alignedEnd; index < size; ++index) | 
|  | res = func(res,eval.coeff(index)); | 
|  | } | 
|  | else // too small to vectorize anything. | 
|  | // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. | 
|  | { | 
|  | res = eval.coeff(0); | 
|  | for(Index index = 1; index < size; ++index) | 
|  | res = func(res,eval.coeff(index)); | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // NOTE: for SliceVectorizedTraversal we simply bypass unrolling | 
|  | template<typename Func, typename Evaluator, int Unrolling> | 
|  | struct redux_impl<Func, Evaluator, SliceVectorizedTraversal, Unrolling> | 
|  | { | 
|  | typedef typename Evaluator::Scalar Scalar; | 
|  | typedef typename redux_traits<Func, Evaluator>::PacketType PacketType; | 
|  |  | 
|  | template<typename XprType> | 
|  | EIGEN_DEVICE_FUNC static Scalar run(const Evaluator &eval, const Func& func, const XprType& xpr) | 
|  | { | 
|  | eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); | 
|  | const Index innerSize = xpr.innerSize(); | 
|  | const Index outerSize = xpr.outerSize(); | 
|  | enum { | 
|  | packetSize = redux_traits<Func, Evaluator>::PacketSize | 
|  | }; | 
|  | const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; | 
|  | Scalar res; | 
|  | if(packetedInnerSize) | 
|  | { | 
|  | PacketType packet_res = eval.template packet<Unaligned,PacketType>(0,0); | 
|  | for(Index j=0; j<outerSize; ++j) | 
|  | for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize)) | 
|  | packet_res = func.packetOp(packet_res, eval.template packetByOuterInner<Unaligned,PacketType>(j,i)); | 
|  |  | 
|  | res = func.predux(packet_res); | 
|  | for(Index j=0; j<outerSize; ++j) | 
|  | for(Index i=packetedInnerSize; i<innerSize; ++i) | 
|  | res = func(res, eval.coeffByOuterInner(j,i)); | 
|  | } | 
|  | else // too small to vectorize anything. | 
|  | // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. | 
|  | { | 
|  | res = redux_impl<Func, Evaluator, DefaultTraversal, NoUnrolling>::run(eval, func, xpr); | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func, typename Evaluator> | 
|  | struct redux_impl<Func, Evaluator, LinearVectorizedTraversal, CompleteUnrolling> | 
|  | { | 
|  | typedef typename Evaluator::Scalar Scalar; | 
|  |  | 
|  | typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar; | 
|  | enum { | 
|  | PacketSize = redux_traits<Func, Evaluator>::PacketSize, | 
|  | Size = Evaluator::SizeAtCompileTime, | 
|  | VectorizedSize = (Size / PacketSize) * PacketSize | 
|  | }; | 
|  |  | 
|  | template<typename XprType> | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE | 
|  | Scalar run(const Evaluator &eval, const Func& func, const XprType &xpr) | 
|  | { | 
|  | eigen_assert(xpr.rows()>0 && xpr.cols()>0 && "you are using an empty matrix"); | 
|  | if (VectorizedSize > 0) { | 
|  | Scalar res = func.predux(redux_vec_unroller<Func, Evaluator, 0, Size / PacketSize>::run(eval,func)); | 
|  | if (VectorizedSize != Size) | 
|  | res = func(res,redux_novec_unroller<Func, Evaluator, VectorizedSize, Size-VectorizedSize>::run(eval,func)); | 
|  | return res; | 
|  | } | 
|  | else { | 
|  | return redux_novec_unroller<Func, Evaluator, 0, Size>::run(eval,func); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // evaluator adaptor | 
|  | template<typename _XprType> | 
|  | class redux_evaluator : public internal::evaluator<_XprType> | 
|  | { | 
|  | typedef internal::evaluator<_XprType> Base; | 
|  | public: | 
|  | typedef _XprType XprType; | 
|  | EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : Base(xpr) {} | 
|  |  | 
|  | typedef typename XprType::Scalar Scalar; | 
|  | typedef typename XprType::CoeffReturnType CoeffReturnType; | 
|  | typedef typename XprType::PacketScalar PacketScalar; | 
|  |  | 
|  | enum { | 
|  | MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = XprType::MaxColsAtCompileTime, | 
|  | // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator | 
|  | Flags = Base::Flags & ~DirectAccessBit, | 
|  | IsRowMajor = XprType::IsRowMajor, | 
|  | SizeAtCompileTime = XprType::SizeAtCompileTime, | 
|  | InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime | 
|  | }; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | CoeffReturnType coeffByOuterInner(Index outer, Index inner) const | 
|  | { return Base::coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } | 
|  |  | 
|  | template<int LoadMode, typename PacketType> | 
|  | PacketType packetByOuterInner(Index outer, Index inner) const | 
|  | { return Base::template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } | 
|  |  | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Part 4 : public API | 
|  | ***************************************************************************/ | 
|  |  | 
|  |  | 
|  | /** \returns the result of a full redux operation on the whole matrix or vector using \a func | 
|  | * | 
|  | * The template parameter \a BinaryOp is the type of the functor \a func which must be | 
|  | * an associative operator. Both current C++98 and C++11 functor styles are handled. | 
|  | * | 
|  | * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<typename Func> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar | 
|  | DenseBase<Derived>::redux(const Func& func) const | 
|  | { | 
|  | eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); | 
|  |  | 
|  | typedef typename internal::redux_evaluator<Derived> ThisEvaluator; | 
|  | ThisEvaluator thisEval(derived()); | 
|  |  | 
|  | // The initial expression is passed to the reducer as an additional argument instead of | 
|  | // passing it as a member of redux_evaluator to help | 
|  | return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func, derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the minimum of all coefficients of \c *this. | 
|  | * \warning the result is undefined if \c *this contains NaN. | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar | 
|  | DenseBase<Derived>::minCoeff() const | 
|  | { | 
|  | return derived().redux(Eigen::internal::scalar_min_op<Scalar,Scalar>()); | 
|  | } | 
|  |  | 
|  | /** \returns the maximum of all coefficients of \c *this. | 
|  | * \warning the result is undefined if \c *this contains NaN. | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar | 
|  | DenseBase<Derived>::maxCoeff() const | 
|  | { | 
|  | return derived().redux(Eigen::internal::scalar_max_op<Scalar,Scalar>()); | 
|  | } | 
|  |  | 
|  | /** \returns the sum of all coefficients of \c *this | 
|  | * | 
|  | * If \c *this is empty, then the value 0 is returned. | 
|  | * | 
|  | * \sa trace(), prod(), mean() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar | 
|  | DenseBase<Derived>::sum() const | 
|  | { | 
|  | if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) | 
|  | return Scalar(0); | 
|  | return derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>()); | 
|  | } | 
|  |  | 
|  | /** \returns the mean of all coefficients of *this | 
|  | * | 
|  | * \sa trace(), prod(), sum() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar | 
|  | DenseBase<Derived>::mean() const | 
|  | { | 
|  | #ifdef __INTEL_COMPILER | 
|  | #pragma warning push | 
|  | #pragma warning ( disable : 2259 ) | 
|  | #endif | 
|  | return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar,Scalar>())) / Scalar(this->size()); | 
|  | #ifdef __INTEL_COMPILER | 
|  | #pragma warning pop | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** \returns the product of all coefficients of *this | 
|  | * | 
|  | * Example: \include MatrixBase_prod.cpp | 
|  | * Output: \verbinclude MatrixBase_prod.out | 
|  | * | 
|  | * \sa sum(), mean(), trace() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar | 
|  | DenseBase<Derived>::prod() const | 
|  | { | 
|  | if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) | 
|  | return Scalar(1); | 
|  | return derived().redux(Eigen::internal::scalar_product_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. | 
|  | * | 
|  | * \c *this can be any matrix, not necessarily square. | 
|  | * | 
|  | * \sa diagonal(), sum() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar | 
|  | MatrixBase<Derived>::trace() const | 
|  | { | 
|  | return derived().diagonal().sum(); | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_REDUX_H |