|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // Copyright (C) 2016 Tobias Wood <tobias@spinicist.org.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_GENERALIZEDEIGENSOLVER_H | 
|  | #define EIGEN_GENERALIZEDEIGENSOLVER_H | 
|  |  | 
|  | #include "./RealQZ.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * | 
|  | * | 
|  | * \class GeneralizedEigenSolver | 
|  | * | 
|  | * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices | 
|  | * | 
|  | * \tparam _MatrixType the type of the matrices of which we are computing the | 
|  | * eigen-decomposition; this is expected to be an instantiation of the Matrix | 
|  | * class template. Currently, only real matrices are supported. | 
|  | * | 
|  | * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars | 
|  | * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$.  If | 
|  | * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and | 
|  | * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = | 
|  | * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we | 
|  | * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition. | 
|  | * | 
|  | * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the | 
|  | * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is | 
|  | * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$ | 
|  | * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero, | 
|  | * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that: | 
|  | * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A  = u_i^T B \f$ where \f$ u_i \f$ is | 
|  | * called the left eigenvector. | 
|  | * | 
|  | * Call the function compute() to compute the generalized eigenvalues and eigenvectors of | 
|  | * a given matrix pair. Alternatively, you can use the | 
|  | * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the | 
|  | * eigenvalues and eigenvectors at construction time. Once the eigenvalue and | 
|  | * eigenvectors are computed, they can be retrieved with the eigenvalues() and | 
|  | * eigenvectors() functions. | 
|  | * | 
|  | * Here is an usage example of this class: | 
|  | * Example: \include GeneralizedEigenSolver.cpp | 
|  | * Output: \verbinclude GeneralizedEigenSolver.out | 
|  | * | 
|  | * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver | 
|  | */ | 
|  | template<typename _MatrixType> class GeneralizedEigenSolver | 
|  | { | 
|  | public: | 
|  |  | 
|  | /** \brief Synonym for the template parameter \p _MatrixType. */ | 
|  | typedef _MatrixType MatrixType; | 
|  |  | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | /** \brief Scalar type for matrices of type #MatrixType. */ | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|  |  | 
|  | /** \brief Complex scalar type for #MatrixType. | 
|  | * | 
|  | * This is \c std::complex<Scalar> if #Scalar is real (e.g., | 
|  | * \c float or \c double) and just \c Scalar if #Scalar is | 
|  | * complex. | 
|  | */ | 
|  | typedef std::complex<RealScalar> ComplexScalar; | 
|  |  | 
|  | /** \brief Type for vector of real scalar values eigenvalues as returned by betas(). | 
|  | * | 
|  | * This is a column vector with entries of type #Scalar. | 
|  | * The length of the vector is the size of #MatrixType. | 
|  | */ | 
|  | typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | /** \brief Type for vector of complex scalar values eigenvalues as returned by alphas(). | 
|  | * | 
|  | * This is a column vector with entries of type #ComplexScalar. | 
|  | * The length of the vector is the size of #MatrixType. | 
|  | */ | 
|  | typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType; | 
|  |  | 
|  | /** \brief Expression type for the eigenvalues as returned by eigenvalues(). | 
|  | */ | 
|  | typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType; | 
|  |  | 
|  | /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). | 
|  | * | 
|  | * This is a square matrix with entries of type #ComplexScalar. | 
|  | * The size is the same as the size of #MatrixType. | 
|  | */ | 
|  | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType; | 
|  |  | 
|  | /** \brief Default constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via EigenSolver::compute(const MatrixType&, bool). | 
|  | * | 
|  | * \sa compute() for an example. | 
|  | */ | 
|  | GeneralizedEigenSolver() | 
|  | : m_eivec(), | 
|  | m_alphas(), | 
|  | m_betas(), | 
|  | m_valuesOkay(false), | 
|  | m_vectorsOkay(false), | 
|  | m_realQZ() | 
|  | {} | 
|  |  | 
|  | /** \brief Default constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa GeneralizedEigenSolver() | 
|  | */ | 
|  | explicit GeneralizedEigenSolver(Index size) | 
|  | : m_eivec(size, size), | 
|  | m_alphas(size), | 
|  | m_betas(size), | 
|  | m_valuesOkay(false), | 
|  | m_vectorsOkay(false), | 
|  | m_realQZ(size), | 
|  | m_tmp(size) | 
|  | {} | 
|  |  | 
|  | /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair. | 
|  | * | 
|  | * \param[in]  A  Square matrix whose eigendecomposition is to be computed. | 
|  | * \param[in]  B  Square matrix whose eigendecomposition is to be computed. | 
|  | * \param[in]  computeEigenvectors  If true, both the eigenvectors and the | 
|  | *    eigenvalues are computed; if false, only the eigenvalues are computed. | 
|  | * | 
|  | * This constructor calls compute() to compute the generalized eigenvalues | 
|  | * and eigenvectors. | 
|  | * | 
|  | * \sa compute() | 
|  | */ | 
|  | GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true) | 
|  | : m_eivec(A.rows(), A.cols()), | 
|  | m_alphas(A.cols()), | 
|  | m_betas(A.cols()), | 
|  | m_valuesOkay(false), | 
|  | m_vectorsOkay(false), | 
|  | m_realQZ(A.cols()), | 
|  | m_tmp(A.cols()) | 
|  | { | 
|  | compute(A, B, computeEigenvectors); | 
|  | } | 
|  |  | 
|  | /* \brief Returns the computed generalized eigenvectors. | 
|  | * | 
|  | * \returns  %Matrix whose columns are the (possibly complex) right eigenvectors. | 
|  | * i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues. | 
|  | * | 
|  | * \pre Either the constructor | 
|  | * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function | 
|  | * compute(const MatrixType&, const MatrixType& bool) has been called before, and | 
|  | * \p computeEigenvectors was set to true (the default). | 
|  | * | 
|  | * \sa eigenvalues() | 
|  | */ | 
|  | EigenvectorsType eigenvectors() const { | 
|  | eigen_assert(m_vectorsOkay && "Eigenvectors for GeneralizedEigenSolver were not calculated."); | 
|  | return m_eivec; | 
|  | } | 
|  |  | 
|  | /** \brief Returns an expression of the computed generalized eigenvalues. | 
|  | * | 
|  | * \returns An expression of the column vector containing the eigenvalues. | 
|  | * | 
|  | * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode | 
|  | * Not that betas might contain zeros. It is therefore not recommended to use this function, | 
|  | * but rather directly deal with the alphas and betas vectors. | 
|  | * | 
|  | * \pre Either the constructor | 
|  | * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function | 
|  | * compute(const MatrixType&,const MatrixType&,bool) has been called before. | 
|  | * | 
|  | * The eigenvalues are repeated according to their algebraic multiplicity, | 
|  | * so there are as many eigenvalues as rows in the matrix. The eigenvalues | 
|  | * are not sorted in any particular order. | 
|  | * | 
|  | * \sa alphas(), betas(), eigenvectors() | 
|  | */ | 
|  | EigenvalueType eigenvalues() const | 
|  | { | 
|  | eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized."); | 
|  | return EigenvalueType(m_alphas,m_betas); | 
|  | } | 
|  |  | 
|  | /** \returns A const reference to the vectors containing the alpha values | 
|  | * | 
|  | * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). | 
|  | * | 
|  | * \sa betas(), eigenvalues() */ | 
|  | ComplexVectorType alphas() const | 
|  | { | 
|  | eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized."); | 
|  | return m_alphas; | 
|  | } | 
|  |  | 
|  | /** \returns A const reference to the vectors containing the beta values | 
|  | * | 
|  | * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). | 
|  | * | 
|  | * \sa alphas(), eigenvalues() */ | 
|  | VectorType betas() const | 
|  | { | 
|  | eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized."); | 
|  | return m_betas; | 
|  | } | 
|  |  | 
|  | /** \brief Computes generalized eigendecomposition of given matrix. | 
|  | * | 
|  | * \param[in]  A  Square matrix whose eigendecomposition is to be computed. | 
|  | * \param[in]  B  Square matrix whose eigendecomposition is to be computed. | 
|  | * \param[in]  computeEigenvectors  If true, both the eigenvectors and the | 
|  | *    eigenvalues are computed; if false, only the eigenvalues are | 
|  | *    computed. | 
|  | * \returns    Reference to \c *this | 
|  | * | 
|  | * This function computes the eigenvalues of the real matrix \p matrix. | 
|  | * The eigenvalues() function can be used to retrieve them.  If | 
|  | * \p computeEigenvectors is true, then the eigenvectors are also computed | 
|  | * and can be retrieved by calling eigenvectors(). | 
|  | * | 
|  | * The matrix is first reduced to real generalized Schur form using the RealQZ | 
|  | * class. The generalized Schur decomposition is then used to compute the eigenvalues | 
|  | * and eigenvectors. | 
|  | * | 
|  | * The cost of the computation is dominated by the cost of the | 
|  | * generalized Schur decomposition. | 
|  | * | 
|  | * This method reuses of the allocated data in the GeneralizedEigenSolver object. | 
|  | */ | 
|  | GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true); | 
|  |  | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_valuesOkay && "EigenSolver is not initialized."); | 
|  | return m_realQZ.info(); | 
|  | } | 
|  |  | 
|  | /** Sets the maximal number of iterations allowed. | 
|  | */ | 
|  | GeneralizedEigenSolver& setMaxIterations(Index maxIters) | 
|  | { | 
|  | m_realQZ.setMaxIterations(maxIters); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | static void check_template_parameters() | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
|  | EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); | 
|  | } | 
|  |  | 
|  | EigenvectorsType m_eivec; | 
|  | ComplexVectorType m_alphas; | 
|  | VectorType m_betas; | 
|  | bool m_valuesOkay, m_vectorsOkay; | 
|  | RealQZ<MatrixType> m_realQZ; | 
|  | ComplexVectorType m_tmp; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | GeneralizedEigenSolver<MatrixType>& | 
|  | GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors) | 
|  | { | 
|  | check_template_parameters(); | 
|  |  | 
|  | using std::sqrt; | 
|  | using std::abs; | 
|  | eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows()); | 
|  | Index size = A.cols(); | 
|  | m_valuesOkay = false; | 
|  | m_vectorsOkay = false; | 
|  | // Reduce to generalized real Schur form: | 
|  | // A = Q S Z and B = Q T Z | 
|  | m_realQZ.compute(A, B, computeEigenvectors); | 
|  | if (m_realQZ.info() == Success) | 
|  | { | 
|  | // Resize storage | 
|  | m_alphas.resize(size); | 
|  | m_betas.resize(size); | 
|  | if (computeEigenvectors) | 
|  | { | 
|  | m_eivec.resize(size,size); | 
|  | m_tmp.resize(size); | 
|  | } | 
|  |  | 
|  | // Aliases: | 
|  | Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size); | 
|  | ComplexVectorType &cv = m_tmp; | 
|  | const MatrixType &mZ = m_realQZ.matrixZ(); | 
|  | const MatrixType &mS = m_realQZ.matrixS(); | 
|  | const MatrixType &mT = m_realQZ.matrixT(); | 
|  |  | 
|  | Index i = 0; | 
|  | while (i < size) | 
|  | { | 
|  | if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0)) | 
|  | { | 
|  | // Real eigenvalue | 
|  | m_alphas.coeffRef(i) = mS.diagonal().coeff(i); | 
|  | m_betas.coeffRef(i)  = mT.diagonal().coeff(i); | 
|  | if (computeEigenvectors) | 
|  | { | 
|  | v.setConstant(Scalar(0.0)); | 
|  | v.coeffRef(i) = Scalar(1.0); | 
|  | // For singular eigenvalues do nothing more | 
|  | if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits<RealScalar>::min)()) | 
|  | { | 
|  | // Non-singular eigenvalue | 
|  | const Scalar alpha = real(m_alphas.coeffRef(i)); | 
|  | const Scalar beta = m_betas.coeffRef(i); | 
|  | for (Index j = i-1; j >= 0; j--) | 
|  | { | 
|  | const Index st = j+1; | 
|  | const Index sz = i-j; | 
|  | if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) | 
|  | { | 
|  | // 2x2 block | 
|  | Matrix<Scalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) ); | 
|  | Matrix<Scalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1); | 
|  | v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs); | 
|  | j--; | 
|  | } | 
|  | else | 
|  | { | 
|  | v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j)); | 
|  | } | 
|  | } | 
|  | } | 
|  | m_eivec.col(i).real().noalias() = mZ.transpose() * v; | 
|  | m_eivec.col(i).real().normalize(); | 
|  | m_eivec.col(i).imag().setConstant(0); | 
|  | } | 
|  | ++i; | 
|  | } | 
|  | else | 
|  | { | 
|  | // We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T | 
|  | // Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00): | 
|  |  | 
|  | // T =  [a 0] | 
|  | //      [0 b] | 
|  | RealScalar a = mT.diagonal().coeff(i), | 
|  | b = mT.diagonal().coeff(i+1); | 
|  | const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b; | 
|  |  | 
|  | // ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug. | 
|  | Matrix<RealScalar,2,2> S2 = mS.template block<2,2>(i,i) * Matrix<Scalar,2,1>(b,a).asDiagonal(); | 
|  |  | 
|  | Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1)); | 
|  | Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1))); | 
|  | const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z); | 
|  | m_alphas.coeffRef(i)   = conj(alpha); | 
|  | m_alphas.coeffRef(i+1) = alpha; | 
|  |  | 
|  | if (computeEigenvectors) { | 
|  | // Compute eigenvector in position (i+1) and then position (i) is just the conjugate | 
|  | cv.setZero(); | 
|  | cv.coeffRef(i+1) = Scalar(1.0); | 
|  | // here, the "static_cast" workaound expression template issues. | 
|  | cv.coeffRef(i) = -(static_cast<Scalar>(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1)) | 
|  | / (static_cast<Scalar>(beta*mS.coeffRef(i,i))   - alpha*mT.coeffRef(i,i)); | 
|  | for (Index j = i-1; j >= 0; j--) | 
|  | { | 
|  | const Index st = j+1; | 
|  | const Index sz = i+1-j; | 
|  | if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) | 
|  | { | 
|  | // 2x2 block | 
|  | Matrix<ComplexScalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) ); | 
|  | Matrix<ComplexScalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1); | 
|  | cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs); | 
|  | j--; | 
|  | } else { | 
|  | cv.coeffRef(j) =  cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() | 
|  | / (alpha*mT.coeffRef(j,j) - static_cast<Scalar>(beta*mS.coeffRef(j,j))); | 
|  | } | 
|  | } | 
|  | m_eivec.col(i+1).noalias() = (mZ.transpose() * cv); | 
|  | m_eivec.col(i+1).normalize(); | 
|  | m_eivec.col(i) = m_eivec.col(i+1).conjugate(); | 
|  | } | 
|  | i += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | m_valuesOkay = true; | 
|  | m_vectorsOkay = computeEigenvectors; | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_GENERALIZEDEIGENSOLVER_H |