|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_ANGLEAXIS_H | 
|  | #define EIGEN_ANGLEAXIS_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class AngleAxis | 
|  | * | 
|  | * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis | 
|  | * | 
|  | * \param _Scalar the scalar type, i.e., the type of the coefficients. | 
|  | * | 
|  | * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. | 
|  | * | 
|  | * The following two typedefs are provided for convenience: | 
|  | * \li \c AngleAxisf for \c float | 
|  | * \li \c AngleAxisd for \c double | 
|  | * | 
|  | * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily | 
|  | * mimic Euler-angles. Here is an example: | 
|  | * \include AngleAxis_mimic_euler.cpp | 
|  | * Output: \verbinclude AngleAxis_mimic_euler.out | 
|  | * | 
|  | * \note This class is not aimed to be used to store a rotation transformation, | 
|  | * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) | 
|  | * and transformation objects. | 
|  | * | 
|  | * \sa class Quaternion, class Transform, MatrixBase::UnitX() | 
|  | */ | 
|  |  | 
|  | namespace internal { | 
|  | template<typename _Scalar> struct traits<AngleAxis<_Scalar> > | 
|  | { | 
|  | typedef _Scalar Scalar; | 
|  | }; | 
|  | } | 
|  |  | 
|  | template<typename _Scalar> | 
|  | class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3> | 
|  | { | 
|  | typedef RotationBase<AngleAxis<_Scalar>,3> Base; | 
|  |  | 
|  | public: | 
|  |  | 
|  | using Base::operator*; | 
|  |  | 
|  | enum { Dim = 3 }; | 
|  | /** the scalar type of the coefficients */ | 
|  | typedef _Scalar Scalar; | 
|  | typedef Matrix<Scalar,3,3> Matrix3; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | typedef Quaternion<Scalar> QuaternionType; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | Vector3 m_axis; | 
|  | Scalar m_angle; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** Default constructor without initialization. */ | 
|  | EIGEN_DEVICE_FUNC AngleAxis() {} | 
|  | /** Constructs and initialize the angle-axis rotation from an \a angle in radian | 
|  | * and an \a axis which \b must \b be \b normalized. | 
|  | * | 
|  | * \warning If the \a axis vector is not normalized, then the angle-axis object | 
|  | *          represents an invalid rotation. */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} | 
|  | /** Constructs and initialize the angle-axis rotation from a quaternion \a q. | 
|  | * This function implicitly normalizes the quaternion \a q. | 
|  | */ | 
|  | template<typename QuatDerived> | 
|  | EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } | 
|  | /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } | 
|  |  | 
|  | /** \returns the value of the rotation angle in radian */ | 
|  | EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; } | 
|  | /** \returns a read-write reference to the stored angle in radian */ | 
|  | EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; } | 
|  |  | 
|  | /** \returns the rotation axis */ | 
|  | EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; } | 
|  | /** \returns a read-write reference to the stored rotation axis. | 
|  | * | 
|  | * \warning The rotation axis must remain a \b unit vector. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; } | 
|  |  | 
|  | /** Concatenates two rotations */ | 
|  | EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const | 
|  | { return QuaternionType(*this) * QuaternionType(other); } | 
|  |  | 
|  | /** Concatenates two rotations */ | 
|  | EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const | 
|  | { return QuaternionType(*this) * other; } | 
|  |  | 
|  | /** Concatenates two rotations */ | 
|  | friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) | 
|  | { return a * QuaternionType(b); } | 
|  |  | 
|  | /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ | 
|  | EIGEN_DEVICE_FUNC AngleAxis inverse() const | 
|  | { return AngleAxis(-m_angle, m_axis); } | 
|  |  | 
|  | template<class QuatDerived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m); | 
|  |  | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); | 
|  | EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const; | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template<typename NewScalarType> | 
|  | EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const | 
|  | { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template<typename OtherScalarType> | 
|  | EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) | 
|  | { | 
|  | m_axis = other.axis().template cast<Scalar>(); | 
|  | m_angle = Scalar(other.angle()); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const | 
|  | { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module | 
|  | * single precision angle-axis type */ | 
|  | typedef AngleAxis<float> AngleAxisf; | 
|  | /** \ingroup Geometry_Module | 
|  | * double precision angle-axis type */ | 
|  | typedef AngleAxis<double> AngleAxisd; | 
|  |  | 
|  | /** Set \c *this from a \b unit quaternion. | 
|  | * | 
|  | * The resulting axis is normalized, and the computed angle is in the [0,pi] range. | 
|  | * | 
|  | * This function implicitly normalizes the quaternion \a q. | 
|  | */ | 
|  | template<typename Scalar> | 
|  | template<typename QuatDerived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(atan2) | 
|  | EIGEN_USING_STD_MATH(abs) | 
|  | Scalar n = q.vec().norm(); | 
|  | if(n<NumTraits<Scalar>::epsilon()) | 
|  | n = q.vec().stableNorm(); | 
|  |  | 
|  | if (n != Scalar(0)) | 
|  | { | 
|  | m_angle = Scalar(2)*atan2(n, abs(q.w())); | 
|  | if(q.w() < Scalar(0)) | 
|  | n = -n; | 
|  | m_axis  = q.vec() / n; | 
|  | } | 
|  | else | 
|  | { | 
|  | m_angle = Scalar(0); | 
|  | m_axis << Scalar(1), Scalar(0), Scalar(0); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a 3x3 rotation matrix \a mat. | 
|  | */ | 
|  | template<typename Scalar> | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) | 
|  | { | 
|  | // Since a direct conversion would not be really faster, | 
|  | // let's use the robust Quaternion implementation: | 
|  | return *this = QuaternionType(mat); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief Sets \c *this from a 3x3 rotation matrix. | 
|  | **/ | 
|  | template<typename Scalar> | 
|  | template<typename Derived> | 
|  | EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) | 
|  | { | 
|  | return *this = QuaternionType(mat); | 
|  | } | 
|  |  | 
|  | /** Constructs and \returns an equivalent 3x3 rotation matrix. | 
|  | */ | 
|  | template<typename Scalar> | 
|  | typename AngleAxis<Scalar>::Matrix3 | 
|  | EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const | 
|  | { | 
|  | EIGEN_USING_STD_MATH(sin) | 
|  | EIGEN_USING_STD_MATH(cos) | 
|  | Matrix3 res; | 
|  | Vector3 sin_axis  = sin(m_angle) * m_axis; | 
|  | Scalar c = cos(m_angle); | 
|  | Vector3 cos1_axis = (Scalar(1)-c) * m_axis; | 
|  |  | 
|  | Scalar tmp; | 
|  | tmp = cos1_axis.x() * m_axis.y(); | 
|  | res.coeffRef(0,1) = tmp - sin_axis.z(); | 
|  | res.coeffRef(1,0) = tmp + sin_axis.z(); | 
|  |  | 
|  | tmp = cos1_axis.x() * m_axis.z(); | 
|  | res.coeffRef(0,2) = tmp + sin_axis.y(); | 
|  | res.coeffRef(2,0) = tmp - sin_axis.y(); | 
|  |  | 
|  | tmp = cos1_axis.y() * m_axis.z(); | 
|  | res.coeffRef(1,2) = tmp - sin_axis.x(); | 
|  | res.coeffRef(2,1) = tmp + sin_axis.x(); | 
|  |  | 
|  | res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_ANGLEAXIS_H |