|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H | 
|  | #define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  | template <typename _MatrixType> | 
|  | struct traits<CompleteOrthogonalDecomposition<_MatrixType> > | 
|  | : traits<_MatrixType> { | 
|  | enum { Flags = 0 }; | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \ingroup QR_Module | 
|  | * | 
|  | * \class CompleteOrthogonalDecomposition | 
|  | * | 
|  | * \brief Complete orthogonal decomposition (COD) of a matrix. | 
|  | * | 
|  | * \param MatrixType the type of the matrix of which we are computing the COD. | 
|  | * | 
|  | * This class performs a rank-revealing complete orthogonal decomposition of a | 
|  | * matrix  \b A into matrices \b P, \b Q, \b T, and \b Z such that | 
|  | * \f[ | 
|  | *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, | 
|  | *                     \begin{bmatrix} \mathbf{T} &  \mathbf{0} \\ | 
|  | *                                     \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z} | 
|  | * \f] | 
|  | * by using Householder transformations. Here, \b P is a permutation matrix, | 
|  | * \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of | 
|  | * size rank-by-rank. \b A may be rank deficient. | 
|  | * | 
|  | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
|  | * | 
|  | * \sa MatrixBase::completeOrthogonalDecomposition() | 
|  | */ | 
|  | template <typename _MatrixType> | 
|  | class CompleteOrthogonalDecomposition { | 
|  | public: | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; | 
|  | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> | 
|  | PermutationType; | 
|  | typedef typename internal::plain_row_type<MatrixType, Index>::type | 
|  | IntRowVectorType; | 
|  | typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; | 
|  | typedef typename internal::plain_row_type<MatrixType, RealScalar>::type | 
|  | RealRowVectorType; | 
|  | typedef HouseholderSequence< | 
|  | MatrixType, typename internal::remove_all< | 
|  | typename HCoeffsType::ConjugateReturnType>::type> | 
|  | HouseholderSequenceType; | 
|  | typedef typename MatrixType::PlainObject PlainObject; | 
|  |  | 
|  | private: | 
|  | typedef typename PermutationType::Index PermIndexType; | 
|  |  | 
|  | public: | 
|  | /** | 
|  | * \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via | 
|  | * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&). | 
|  | */ | 
|  | CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa CompleteOrthogonalDecomposition() | 
|  | */ | 
|  | CompleteOrthogonalDecomposition(Index rows, Index cols) | 
|  | : m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {} | 
|  |  | 
|  | /** \brief Constructs a complete orthogonal decomposition from a given | 
|  | * matrix. | 
|  | * | 
|  | * This constructor computes the complete orthogonal decomposition of the | 
|  | * matrix \a matrix by calling the method compute(). The default | 
|  | * threshold for rank determination will be used. It is a short cut for: | 
|  | * | 
|  | * \code | 
|  | * CompleteOrthogonalDecomposition<MatrixType> cod(matrix.rows(), | 
|  | *                                                 matrix.cols()); | 
|  | * cod.setThreshold(Default); | 
|  | * cod.compute(matrix); | 
|  | * \endcode | 
|  | * | 
|  | * \sa compute() | 
|  | */ | 
|  | template <typename InputType> | 
|  | explicit CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix) | 
|  | : m_cpqr(matrix.rows(), matrix.cols()), | 
|  | m_zCoeffs((std::min)(matrix.rows(), matrix.cols())), | 
|  | m_temp(matrix.cols()) | 
|  | { | 
|  | compute(matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \brief Constructs a complete orthogonal decomposition from a given matrix | 
|  | * | 
|  | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. | 
|  | * | 
|  | * \sa CompleteOrthogonalDecomposition(const EigenBase&) | 
|  | */ | 
|  | template<typename InputType> | 
|  | explicit CompleteOrthogonalDecomposition(EigenBase<InputType>& matrix) | 
|  | : m_cpqr(matrix.derived()), | 
|  | m_zCoeffs((std::min)(matrix.rows(), matrix.cols())), | 
|  | m_temp(matrix.cols()) | 
|  | { | 
|  | computeInPlace(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** This method computes the minimum-norm solution X to a least squares | 
|  | * problem \f[\mathrm{minimize} \|A X - B\|, \f] where \b A is the matrix of | 
|  | * which \c *this is the complete orthogonal decomposition. | 
|  | * | 
|  | * \param b the right-hand sides of the problem to solve. | 
|  | * | 
|  | * \returns a solution. | 
|  | * | 
|  | */ | 
|  | template <typename Rhs> | 
|  | inline const Solve<CompleteOrthogonalDecomposition, Rhs> solve( | 
|  | const MatrixBase<Rhs>& b) const { | 
|  | eigen_assert(m_cpqr.m_isInitialized && | 
|  | "CompleteOrthogonalDecomposition is not initialized."); | 
|  | return Solve<CompleteOrthogonalDecomposition, Rhs>(*this, b.derived()); | 
|  | } | 
|  |  | 
|  | HouseholderSequenceType householderQ(void) const; | 
|  | HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); } | 
|  |  | 
|  | /** \returns the matrix \b Z. | 
|  | */ | 
|  | MatrixType matrixZ() const { | 
|  | MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols()); | 
|  | applyZAdjointOnTheLeftInPlace(Z); | 
|  | return Z.adjoint(); | 
|  | } | 
|  |  | 
|  | /** \returns a reference to the matrix where the complete orthogonal | 
|  | * decomposition is stored | 
|  | */ | 
|  | const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); } | 
|  |  | 
|  | /** \returns a reference to the matrix where the complete orthogonal | 
|  | * decomposition is stored. | 
|  | * \warning The strict lower part and \code cols() - rank() \endcode right | 
|  | * columns of this matrix contains internal values. | 
|  | * Only the upper triangular part should be referenced. To get it, use | 
|  | * \code matrixT().template triangularView<Upper>() \endcode | 
|  | * For rank-deficient matrices, use | 
|  | * \code | 
|  | * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>() | 
|  | * \endcode | 
|  | */ | 
|  | const MatrixType& matrixT() const { return m_cpqr.matrixQR(); } | 
|  |  | 
|  | template <typename InputType> | 
|  | CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix) { | 
|  | // Compute the column pivoted QR factorization A P = Q R. | 
|  | m_cpqr.compute(matrix); | 
|  | computeInPlace(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns a const reference to the column permutation matrix */ | 
|  | const PermutationType& colsPermutation() const { | 
|  | return m_cpqr.colsPermutation(); | 
|  | } | 
|  |  | 
|  | /** \returns the absolute value of the determinant of the matrix of which | 
|  | * *this is the complete orthogonal decomposition. It has only linear | 
|  | * complexity (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the complete orthogonal decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * One way to work around that is to use logAbsDeterminant() instead. | 
|  | * | 
|  | * \sa logAbsDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar absDeterminant() const; | 
|  |  | 
|  | /** \returns the natural log of the absolute value of the determinant of the | 
|  | * matrix of which *this is the complete orthogonal decomposition. It has | 
|  | * only linear complexity (that is, O(n) where n is the dimension of the | 
|  | * square matrix) as the complete orthogonal decomposition has already been | 
|  | * computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \note This method is useful to work around the risk of overflow/underflow | 
|  | * that's inherent to determinant computation. | 
|  | * | 
|  | * \sa absDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar logAbsDeterminant() const; | 
|  |  | 
|  | /** \returns the rank of the matrix of which *this is the complete orthogonal | 
|  | * decomposition. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered | 
|  | * nonzero. For that, it uses the threshold value that you can control by | 
|  | * calling setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline Index rank() const { return m_cpqr.rank(); } | 
|  |  | 
|  | /** \returns the dimension of the kernel of the matrix of which *this is the | 
|  | * complete orthogonal decomposition. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered | 
|  | * nonzero. For that, it uses the threshold value that you can control by | 
|  | * calling setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the decomposition represents | 
|  | * an injective linear map, i.e. has trivial kernel; false otherwise. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered | 
|  | * nonzero. For that, it uses the threshold value that you can control by | 
|  | * calling setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isInjective() const { return m_cpqr.isInjective(); } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the decomposition represents | 
|  | * a surjective linear map; false otherwise. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered | 
|  | * nonzero. For that, it uses the threshold value that you can control by | 
|  | * calling setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isSurjective() const { return m_cpqr.isSurjective(); } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the complete orthogonal | 
|  | * decomposition is invertible. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered | 
|  | * nonzero. For that, it uses the threshold value that you can control by | 
|  | * calling setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isInvertible() const { return m_cpqr.isInvertible(); } | 
|  |  | 
|  | /** \returns the pseudo-inverse of the matrix of which *this is the complete | 
|  | * orthogonal decomposition. | 
|  | * \warning: Do not compute \c this->pseudoInverse()*rhs to solve a linear systems. | 
|  | * It is more efficient and numerically stable to call \c this->solve(rhs). | 
|  | */ | 
|  | inline const Inverse<CompleteOrthogonalDecomposition> pseudoInverse() const | 
|  | { | 
|  | return Inverse<CompleteOrthogonalDecomposition>(*this); | 
|  | } | 
|  |  | 
|  | inline Index rows() const { return m_cpqr.rows(); } | 
|  | inline Index cols() const { return m_cpqr.cols(); } | 
|  |  | 
|  | /** \returns a const reference to the vector of Householder coefficients used | 
|  | * to represent the factor \c Q. | 
|  | * | 
|  | * For advanced uses only. | 
|  | */ | 
|  | inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); } | 
|  |  | 
|  | /** \returns a const reference to the vector of Householder coefficients | 
|  | * used to represent the factor \c Z. | 
|  | * | 
|  | * For advanced uses only. | 
|  | */ | 
|  | const HCoeffsType& zCoeffs() const { return m_zCoeffs; } | 
|  |  | 
|  | /** Allows to prescribe a threshold to be used by certain methods, such as | 
|  | * rank(), who need to determine when pivots are to be considered nonzero. | 
|  | * Most be called before calling compute(). | 
|  | * | 
|  | * When it needs to get the threshold value, Eigen calls threshold(). By | 
|  | * default, this uses a formula to automatically determine a reasonable | 
|  | * threshold. Once you have called the present method | 
|  | * setThreshold(const RealScalar&), your value is used instead. | 
|  | * | 
|  | * \param threshold The new value to use as the threshold. | 
|  | * | 
|  | * A pivot will be considered nonzero if its absolute value is strictly | 
|  | * greater than | 
|  | *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ | 
|  | * where maxpivot is the biggest pivot. | 
|  | * | 
|  | * If you want to come back to the default behavior, call | 
|  | * setThreshold(Default_t) | 
|  | */ | 
|  | CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) { | 
|  | m_cpqr.setThreshold(threshold); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Allows to come back to the default behavior, letting Eigen use its default | 
|  | * formula for determining the threshold. | 
|  | * | 
|  | * You should pass the special object Eigen::Default as parameter here. | 
|  | * \code qr.setThreshold(Eigen::Default); \endcode | 
|  | * | 
|  | * See the documentation of setThreshold(const RealScalar&). | 
|  | */ | 
|  | CompleteOrthogonalDecomposition& setThreshold(Default_t) { | 
|  | m_cpqr.setThreshold(Default); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Returns the threshold that will be used by certain methods such as rank(). | 
|  | * | 
|  | * See the documentation of setThreshold(const RealScalar&). | 
|  | */ | 
|  | RealScalar threshold() const { return m_cpqr.threshold(); } | 
|  |  | 
|  | /** \returns the number of nonzero pivots in the complete orthogonal | 
|  | * decomposition. Here nonzero is meant in the exact sense, not in a | 
|  | * fuzzy sense. So that notion isn't really intrinsically interesting, | 
|  | * but it is still useful when implementing algorithms. | 
|  | * | 
|  | * \sa rank() | 
|  | */ | 
|  | inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); } | 
|  |  | 
|  | /** \returns the absolute value of the biggest pivot, i.e. the biggest | 
|  | *          diagonal coefficient of R. | 
|  | */ | 
|  | inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); } | 
|  |  | 
|  | /** \brief Reports whether the complete orthogonal decomposition was | 
|  | * successful. | 
|  | * | 
|  | * \note This function always returns \c Success. It is provided for | 
|  | * compatibility | 
|  | * with other factorization routines. | 
|  | * \returns \c Success | 
|  | */ | 
|  | ComputationInfo info() const { | 
|  | eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized."); | 
|  | return Success; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template <typename RhsType, typename DstType> | 
|  | void _solve_impl(const RhsType& rhs, DstType& dst) const; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | static void check_template_parameters() { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
|  | } | 
|  |  | 
|  | void computeInPlace(); | 
|  |  | 
|  | /** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$. | 
|  | */ | 
|  | template <typename Rhs> | 
|  | void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const; | 
|  |  | 
|  | ColPivHouseholderQR<MatrixType> m_cpqr; | 
|  | HCoeffsType m_zCoeffs; | 
|  | RowVectorType m_temp; | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | typename MatrixType::RealScalar | 
|  | CompleteOrthogonalDecomposition<MatrixType>::absDeterminant() const { | 
|  | return m_cpqr.absDeterminant(); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | typename MatrixType::RealScalar | 
|  | CompleteOrthogonalDecomposition<MatrixType>::logAbsDeterminant() const { | 
|  | return m_cpqr.logAbsDeterminant(); | 
|  | } | 
|  |  | 
|  | /** Performs the complete orthogonal decomposition of the given matrix \a | 
|  | * matrix. The result of the factorization is stored into \c *this, and a | 
|  | * reference to \c *this is returned. | 
|  | * | 
|  | * \sa class CompleteOrthogonalDecomposition, | 
|  | * CompleteOrthogonalDecomposition(const MatrixType&) | 
|  | */ | 
|  | template <typename MatrixType> | 
|  | void CompleteOrthogonalDecomposition<MatrixType>::computeInPlace() | 
|  | { | 
|  | check_template_parameters(); | 
|  |  | 
|  | // the column permutation is stored as int indices, so just to be sure: | 
|  | eigen_assert(m_cpqr.cols() <= NumTraits<int>::highest()); | 
|  |  | 
|  | const Index rank = m_cpqr.rank(); | 
|  | const Index cols = m_cpqr.cols(); | 
|  | const Index rows = m_cpqr.rows(); | 
|  | m_zCoeffs.resize((std::min)(rows, cols)); | 
|  | m_temp.resize(cols); | 
|  |  | 
|  | if (rank < cols) { | 
|  | // We have reduced the (permuted) matrix to the form | 
|  | //   [R11 R12] | 
|  | //   [ 0  R22] | 
|  | // where R11 is r-by-r (r = rank) upper triangular, R12 is | 
|  | // r-by-(n-r), and R22 is empty or the norm of R22 is negligible. | 
|  | // We now compute the complete orthogonal decomposition by applying | 
|  | // Householder transformations from the right to the upper trapezoidal | 
|  | // matrix X = [R11 R12] to zero out R12 and obtain the factorization | 
|  | // [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and | 
|  | // Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix. | 
|  | // We store the data representing Z in R12 and m_zCoeffs. | 
|  | for (Index k = rank - 1; k >= 0; --k) { | 
|  | if (k != rank - 1) { | 
|  | // Given the API for Householder reflectors, it is more convenient if | 
|  | // we swap the leading parts of columns k and r-1 (zero-based) to form | 
|  | // the matrix X_k = [X(0:k, k), X(0:k, r:n)] | 
|  | m_cpqr.m_qr.col(k).head(k + 1).swap( | 
|  | m_cpqr.m_qr.col(rank - 1).head(k + 1)); | 
|  | } | 
|  | // Construct Householder reflector Z(k) to zero out the last row of X_k, | 
|  | // i.e. choose Z(k) such that | 
|  | // [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0]. | 
|  | RealScalar beta; | 
|  | m_cpqr.m_qr.row(k) | 
|  | .tail(cols - rank + 1) | 
|  | .makeHouseholderInPlace(m_zCoeffs(k), beta); | 
|  | m_cpqr.m_qr(k, rank - 1) = beta; | 
|  | if (k > 0) { | 
|  | // Apply Z(k) to the first k rows of X_k | 
|  | m_cpqr.m_qr.topRightCorner(k, cols - rank + 1) | 
|  | .applyHouseholderOnTheRight( | 
|  | m_cpqr.m_qr.row(k).tail(cols - rank).adjoint(), m_zCoeffs(k), | 
|  | &m_temp(0)); | 
|  | } | 
|  | if (k != rank - 1) { | 
|  | // Swap X(0:k,k) back to its proper location. | 
|  | m_cpqr.m_qr.col(k).head(k + 1).swap( | 
|  | m_cpqr.m_qr.col(rank - 1).head(k + 1)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | template <typename Rhs> | 
|  | void CompleteOrthogonalDecomposition<MatrixType>::applyZAdjointOnTheLeftInPlace( | 
|  | Rhs& rhs) const { | 
|  | const Index cols = this->cols(); | 
|  | const Index nrhs = rhs.cols(); | 
|  | const Index rank = this->rank(); | 
|  | Matrix<typename MatrixType::Scalar, Dynamic, 1> temp((std::max)(cols, nrhs)); | 
|  | for (Index k = 0; k < rank; ++k) { | 
|  | if (k != rank - 1) { | 
|  | rhs.row(k).swap(rhs.row(rank - 1)); | 
|  | } | 
|  | rhs.middleRows(rank - 1, cols - rank + 1) | 
|  | .applyHouseholderOnTheLeft( | 
|  | matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k), | 
|  | &temp(0)); | 
|  | if (k != rank - 1) { | 
|  | rhs.row(k).swap(rhs.row(rank - 1)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template <typename _MatrixType> | 
|  | template <typename RhsType, typename DstType> | 
|  | void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl( | 
|  | const RhsType& rhs, DstType& dst) const { | 
|  | eigen_assert(rhs.rows() == this->rows()); | 
|  |  | 
|  | const Index rank = this->rank(); | 
|  | if (rank == 0) { | 
|  | dst.setZero(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compute c = Q^* * rhs | 
|  | typename RhsType::PlainObject c(rhs); | 
|  | c.applyOnTheLeft(matrixQ().setLength(rank).adjoint()); | 
|  |  | 
|  | // Solve T z = c(1:rank, :) | 
|  | dst.topRows(rank) = matrixT() | 
|  | .topLeftCorner(rank, rank) | 
|  | .template triangularView<Upper>() | 
|  | .solve(c.topRows(rank)); | 
|  |  | 
|  | const Index cols = this->cols(); | 
|  | if (rank < cols) { | 
|  | // Compute y = Z^* * [ z ] | 
|  | //                   [ 0 ] | 
|  | dst.bottomRows(cols - rank).setZero(); | 
|  | applyZAdjointOnTheLeftInPlace(dst); | 
|  | } | 
|  |  | 
|  | // Undo permutation to get x = P^{-1} * y. | 
|  | dst = colsPermutation() * dst; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename DstXprType, typename MatrixType> | 
|  | struct Assignment<DstXprType, Inverse<CompleteOrthogonalDecomposition<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename CompleteOrthogonalDecomposition<MatrixType>::Scalar>, Dense2Dense> | 
|  | { | 
|  | typedef CompleteOrthogonalDecomposition<MatrixType> CodType; | 
|  | typedef Inverse<CodType> SrcXprType; | 
|  | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename CodType::Scalar> &) | 
|  | { | 
|  | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.rows())); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \returns the matrix Q as a sequence of householder transformations */ | 
|  | template <typename MatrixType> | 
|  | typename CompleteOrthogonalDecomposition<MatrixType>::HouseholderSequenceType | 
|  | CompleteOrthogonalDecomposition<MatrixType>::householderQ() const { | 
|  | return m_cpqr.householderQ(); | 
|  | } | 
|  |  | 
|  | /** \return the complete orthogonal decomposition of \c *this. | 
|  | * | 
|  | * \sa class CompleteOrthogonalDecomposition | 
|  | */ | 
|  | template <typename Derived> | 
|  | const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::completeOrthogonalDecomposition() const { | 
|  | return CompleteOrthogonalDecomposition<PlainObject>(eval()); | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H |