|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SPARSEMATRIX_H | 
|  | #define EIGEN_SPARSEMATRIX_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \ingroup SparseCore_Module | 
|  | * | 
|  | * \class SparseMatrix | 
|  | * | 
|  | * \brief A versatible sparse matrix representation | 
|  | * | 
|  | * This class implements a more versatile variants of the common \em compressed row/column storage format. | 
|  | * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. | 
|  | * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra | 
|  | * space in between the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero | 
|  | * can be done with limited memory reallocation and copies. | 
|  | * | 
|  | * A call to the function makeCompressed() turns the matrix into the standard \em compressed format | 
|  | * compatible with many library. | 
|  | * | 
|  | * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages". | 
|  | * | 
|  | * \tparam _Scalar the scalar type, i.e. the type of the coefficients | 
|  | * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility | 
|  | *                 is ColMajor or RowMajor. The default is 0 which means column-major. | 
|  | * \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int. | 
|  | * | 
|  | * \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int), | 
|  | *          whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index. | 
|  | *          Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead. | 
|  | * | 
|  | * This class can be extended with the help of the plugin mechanism described on the page | 
|  | * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN. | 
|  | */ | 
|  |  | 
|  | namespace internal { | 
|  | template<typename _Scalar, int _Options, typename _StorageIndex> | 
|  | struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> > | 
|  | { | 
|  | typedef _Scalar Scalar; | 
|  | typedef _StorageIndex StorageIndex; | 
|  | typedef Sparse StorageKind; | 
|  | typedef MatrixXpr XprKind; | 
|  | enum { | 
|  | RowsAtCompileTime = Dynamic, | 
|  | ColsAtCompileTime = Dynamic, | 
|  | MaxRowsAtCompileTime = Dynamic, | 
|  | MaxColsAtCompileTime = Dynamic, | 
|  | Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit, | 
|  | SupportedAccessPatterns = InnerRandomAccessPattern | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex> | 
|  | struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> > | 
|  | { | 
|  | typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType; | 
|  | typedef typename ref_selector<MatrixType>::type MatrixTypeNested; | 
|  | typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested; | 
|  |  | 
|  | typedef _Scalar Scalar; | 
|  | typedef Dense StorageKind; | 
|  | typedef _StorageIndex StorageIndex; | 
|  | typedef MatrixXpr XprKind; | 
|  |  | 
|  | enum { | 
|  | RowsAtCompileTime = Dynamic, | 
|  | ColsAtCompileTime = 1, | 
|  | MaxRowsAtCompileTime = Dynamic, | 
|  | MaxColsAtCompileTime = 1, | 
|  | Flags = LvalueBit | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex> | 
|  | struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> > | 
|  | : public traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> > | 
|  | { | 
|  | enum { | 
|  | Flags = 0 | 
|  | }; | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | template<typename _Scalar, int _Options, typename _StorageIndex> | 
|  | class SparseMatrix | 
|  | : public SparseCompressedBase<SparseMatrix<_Scalar, _Options, _StorageIndex> > | 
|  | { | 
|  | typedef SparseCompressedBase<SparseMatrix> Base; | 
|  | using Base::convert_index; | 
|  | friend class SparseVector<_Scalar,0,_StorageIndex>; | 
|  | public: | 
|  | using Base::isCompressed; | 
|  | using Base::nonZeros; | 
|  | EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix) | 
|  | using Base::operator+=; | 
|  | using Base::operator-=; | 
|  |  | 
|  | typedef MappedSparseMatrix<Scalar,Flags> Map; | 
|  | typedef Diagonal<SparseMatrix> DiagonalReturnType; | 
|  | typedef Diagonal<const SparseMatrix> ConstDiagonalReturnType; | 
|  | typedef typename Base::InnerIterator InnerIterator; | 
|  | typedef typename Base::ReverseInnerIterator ReverseInnerIterator; | 
|  |  | 
|  |  | 
|  | using Base::IsRowMajor; | 
|  | typedef internal::CompressedStorage<Scalar,StorageIndex> Storage; | 
|  | enum { | 
|  | Options = _Options | 
|  | }; | 
|  |  | 
|  | typedef typename Base::IndexVector IndexVector; | 
|  | typedef typename Base::ScalarVector ScalarVector; | 
|  | protected: | 
|  | typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix; | 
|  |  | 
|  | Index m_outerSize; | 
|  | Index m_innerSize; | 
|  | StorageIndex* m_outerIndex; | 
|  | StorageIndex* m_innerNonZeros;     // optional, if null then the data is compressed | 
|  | Storage m_data; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** \returns the number of rows of the matrix */ | 
|  | inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } | 
|  | /** \returns the number of columns of the matrix */ | 
|  | inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } | 
|  |  | 
|  | /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */ | 
|  | inline Index innerSize() const { return m_innerSize; } | 
|  | /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */ | 
|  | inline Index outerSize() const { return m_outerSize; } | 
|  |  | 
|  | /** \returns a const pointer to the array of values. | 
|  | * This function is aimed at interoperability with other libraries. | 
|  | * \sa innerIndexPtr(), outerIndexPtr() */ | 
|  | inline const Scalar* valuePtr() const { return m_data.valuePtr(); } | 
|  | /** \returns a non-const pointer to the array of values. | 
|  | * This function is aimed at interoperability with other libraries. | 
|  | * \sa innerIndexPtr(), outerIndexPtr() */ | 
|  | inline Scalar* valuePtr() { return m_data.valuePtr(); } | 
|  |  | 
|  | /** \returns a const pointer to the array of inner indices. | 
|  | * This function is aimed at interoperability with other libraries. | 
|  | * \sa valuePtr(), outerIndexPtr() */ | 
|  | inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } | 
|  | /** \returns a non-const pointer to the array of inner indices. | 
|  | * This function is aimed at interoperability with other libraries. | 
|  | * \sa valuePtr(), outerIndexPtr() */ | 
|  | inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } | 
|  |  | 
|  | /** \returns a const pointer to the array of the starting positions of the inner vectors. | 
|  | * This function is aimed at interoperability with other libraries. | 
|  | * \sa valuePtr(), innerIndexPtr() */ | 
|  | inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; } | 
|  | /** \returns a non-const pointer to the array of the starting positions of the inner vectors. | 
|  | * This function is aimed at interoperability with other libraries. | 
|  | * \sa valuePtr(), innerIndexPtr() */ | 
|  | inline StorageIndex* outerIndexPtr() { return m_outerIndex; } | 
|  |  | 
|  | /** \returns a const pointer to the array of the number of non zeros of the inner vectors. | 
|  | * This function is aimed at interoperability with other libraries. | 
|  | * \warning it returns the null pointer 0 in compressed mode */ | 
|  | inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; } | 
|  | /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. | 
|  | * This function is aimed at interoperability with other libraries. | 
|  | * \warning it returns the null pointer 0 in compressed mode */ | 
|  | inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; } | 
|  |  | 
|  | /** \internal */ | 
|  | inline Storage& data() { return m_data; } | 
|  | /** \internal */ | 
|  | inline const Storage& data() const { return m_data; } | 
|  |  | 
|  | /** \returns the value of the matrix at position \a i, \a j | 
|  | * This function returns Scalar(0) if the element is an explicit \em zero */ | 
|  | inline Scalar coeff(Index row, Index col) const | 
|  | { | 
|  | eigen_assert(row>=0 && row<rows() && col>=0 && col<cols()); | 
|  |  | 
|  | const Index outer = IsRowMajor ? row : col; | 
|  | const Index inner = IsRowMajor ? col : row; | 
|  | Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1]; | 
|  | return m_data.atInRange(m_outerIndex[outer], end, StorageIndex(inner)); | 
|  | } | 
|  |  | 
|  | /** \returns a non-const reference to the value of the matrix at position \a i, \a j | 
|  | * | 
|  | * If the element does not exist then it is inserted via the insert(Index,Index) function | 
|  | * which itself turns the matrix into a non compressed form if that was not the case. | 
|  | * | 
|  | * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index) | 
|  | * function if the element does not already exist. | 
|  | */ | 
|  | inline Scalar& coeffRef(Index row, Index col) | 
|  | { | 
|  | eigen_assert(row>=0 && row<rows() && col>=0 && col<cols()); | 
|  |  | 
|  | const Index outer = IsRowMajor ? row : col; | 
|  | const Index inner = IsRowMajor ? col : row; | 
|  |  | 
|  | Index start = m_outerIndex[outer]; | 
|  | Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1]; | 
|  | eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix"); | 
|  | if(end<=start) | 
|  | return insert(row,col); | 
|  | const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner)); | 
|  | if((p<end) && (m_data.index(p)==inner)) | 
|  | return m_data.value(p); | 
|  | else | 
|  | return insert(row,col); | 
|  | } | 
|  |  | 
|  | /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col. | 
|  | * The non zero coefficient must \b not already exist. | 
|  | * | 
|  | * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed | 
|  | * mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier. | 
|  | * In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be | 
|  | * inserted by increasing outer-indices. | 
|  | * | 
|  | * If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first | 
|  | * call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector. | 
|  | * | 
|  | * Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1) | 
|  | * if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion. | 
|  | * | 
|  | */ | 
|  | Scalar& insert(Index row, Index col); | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** Removes all non zeros but keep allocated memory | 
|  | * | 
|  | * This function does not free the currently allocated memory. To release as much as memory as possible, | 
|  | * call \code mat.data().squeeze(); \endcode after resizing it. | 
|  | * | 
|  | * \sa resize(Index,Index), data() | 
|  | */ | 
|  | inline void setZero() | 
|  | { | 
|  | m_data.clear(); | 
|  | memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex)); | 
|  | if(m_innerNonZeros) | 
|  | memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex)); | 
|  | } | 
|  |  | 
|  | /** Preallocates \a reserveSize non zeros. | 
|  | * | 
|  | * Precondition: the matrix must be in compressed mode. */ | 
|  | inline void reserve(Index reserveSize) | 
|  | { | 
|  | eigen_assert(isCompressed() && "This function does not make sense in non compressed mode."); | 
|  | m_data.reserve(reserveSize); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j. | 
|  | * | 
|  | * This function turns the matrix in non-compressed mode. | 
|  | * | 
|  | * The type \c SizesType must expose the following interface: | 
|  | \code | 
|  | typedef value_type; | 
|  | const value_type& operator[](i) const; | 
|  | \endcode | 
|  | * for \c i in the [0,this->outerSize()[ range. | 
|  | * Typical choices include std::vector<int>, Eigen::VectorXi, Eigen::VectorXi::Constant, etc. | 
|  | */ | 
|  | template<class SizesType> | 
|  | inline void reserve(const SizesType& reserveSizes); | 
|  | #else | 
|  | template<class SizesType> | 
|  | inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = | 
|  | #if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename | 
|  | typename | 
|  | #endif | 
|  | SizesType::value_type()) | 
|  | { | 
|  | EIGEN_UNUSED_VARIABLE(enableif); | 
|  | reserveInnerVectors(reserveSizes); | 
|  | } | 
|  | #endif // EIGEN_PARSED_BY_DOXYGEN | 
|  | protected: | 
|  | template<class SizesType> | 
|  | inline void reserveInnerVectors(const SizesType& reserveSizes) | 
|  | { | 
|  | if(isCompressed()) | 
|  | { | 
|  | Index totalReserveSize = 0; | 
|  | // turn the matrix into non-compressed mode | 
|  | m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex))); | 
|  | if (!m_innerNonZeros) internal::throw_std_bad_alloc(); | 
|  |  | 
|  | // temporarily use m_innerSizes to hold the new starting points. | 
|  | StorageIndex* newOuterIndex = m_innerNonZeros; | 
|  |  | 
|  | StorageIndex count = 0; | 
|  | for(Index j=0; j<m_outerSize; ++j) | 
|  | { | 
|  | newOuterIndex[j] = count; | 
|  | count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]); | 
|  | totalReserveSize += reserveSizes[j]; | 
|  | } | 
|  | m_data.reserve(totalReserveSize); | 
|  | StorageIndex previousOuterIndex = m_outerIndex[m_outerSize]; | 
|  | for(Index j=m_outerSize-1; j>=0; --j) | 
|  | { | 
|  | StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j]; | 
|  | for(Index i=innerNNZ-1; i>=0; --i) | 
|  | { | 
|  | m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); | 
|  | m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); | 
|  | } | 
|  | previousOuterIndex = m_outerIndex[j]; | 
|  | m_outerIndex[j] = newOuterIndex[j]; | 
|  | m_innerNonZeros[j] = innerNNZ; | 
|  | } | 
|  | m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1]; | 
|  |  | 
|  | m_data.resize(m_outerIndex[m_outerSize]); | 
|  | } | 
|  | else | 
|  | { | 
|  | StorageIndex* newOuterIndex = static_cast<StorageIndex*>(std::malloc((m_outerSize+1)*sizeof(StorageIndex))); | 
|  | if (!newOuterIndex) internal::throw_std_bad_alloc(); | 
|  |  | 
|  | StorageIndex count = 0; | 
|  | for(Index j=0; j<m_outerSize; ++j) | 
|  | { | 
|  | newOuterIndex[j] = count; | 
|  | StorageIndex alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j]; | 
|  | StorageIndex toReserve = std::max<StorageIndex>(reserveSizes[j], alreadyReserved); | 
|  | count += toReserve + m_innerNonZeros[j]; | 
|  | } | 
|  | newOuterIndex[m_outerSize] = count; | 
|  |  | 
|  | m_data.resize(count); | 
|  | for(Index j=m_outerSize-1; j>=0; --j) | 
|  | { | 
|  | Index offset = newOuterIndex[j] - m_outerIndex[j]; | 
|  | if(offset>0) | 
|  | { | 
|  | StorageIndex innerNNZ = m_innerNonZeros[j]; | 
|  | for(Index i=innerNNZ-1; i>=0; --i) | 
|  | { | 
|  | m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); | 
|  | m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::swap(m_outerIndex, newOuterIndex); | 
|  | std::free(newOuterIndex); | 
|  | } | 
|  |  | 
|  | } | 
|  | public: | 
|  |  | 
|  | //--- low level purely coherent filling --- | 
|  |  | 
|  | /** \internal | 
|  | * \returns a reference to the non zero coefficient at position \a row, \a col assuming that: | 
|  | * - the nonzero does not already exist | 
|  | * - the new coefficient is the last one according to the storage order | 
|  | * | 
|  | * Before filling a given inner vector you must call the statVec(Index) function. | 
|  | * | 
|  | * After an insertion session, you should call the finalize() function. | 
|  | * | 
|  | * \sa insert, insertBackByOuterInner, startVec */ | 
|  | inline Scalar& insertBack(Index row, Index col) | 
|  | { | 
|  | return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * \sa insertBack, startVec */ | 
|  | inline Scalar& insertBackByOuterInner(Index outer, Index inner) | 
|  | { | 
|  | eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)"); | 
|  | eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)"); | 
|  | Index p = m_outerIndex[outer+1]; | 
|  | ++m_outerIndex[outer+1]; | 
|  | m_data.append(Scalar(0), inner); | 
|  | return m_data.value(p); | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * \warning use it only if you know what you are doing */ | 
|  | inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) | 
|  | { | 
|  | Index p = m_outerIndex[outer+1]; | 
|  | ++m_outerIndex[outer+1]; | 
|  | m_data.append(Scalar(0), inner); | 
|  | return m_data.value(p); | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * \sa insertBack, insertBackByOuterInner */ | 
|  | inline void startVec(Index outer) | 
|  | { | 
|  | eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially"); | 
|  | eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially"); | 
|  | m_outerIndex[outer+1] = m_outerIndex[outer]; | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * Must be called after inserting a set of non zero entries using the low level compressed API. | 
|  | */ | 
|  | inline void finalize() | 
|  | { | 
|  | if(isCompressed()) | 
|  | { | 
|  | StorageIndex size = internal::convert_index<StorageIndex>(m_data.size()); | 
|  | Index i = m_outerSize; | 
|  | // find the last filled column | 
|  | while (i>=0 && m_outerIndex[i]==0) | 
|  | --i; | 
|  | ++i; | 
|  | while (i<=m_outerSize) | 
|  | { | 
|  | m_outerIndex[i] = size; | 
|  | ++i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //--- | 
|  |  | 
|  | template<typename InputIterators> | 
|  | void setFromTriplets(const InputIterators& begin, const InputIterators& end); | 
|  |  | 
|  | template<typename InputIterators,typename DupFunctor> | 
|  | void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func); | 
|  |  | 
|  | void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op<Scalar,Scalar>()); } | 
|  |  | 
|  | template<typename DupFunctor> | 
|  | void collapseDuplicates(DupFunctor dup_func = DupFunctor()); | 
|  |  | 
|  | //--- | 
|  |  | 
|  | /** \internal | 
|  | * same as insert(Index,Index) except that the indices are given relative to the storage order */ | 
|  | Scalar& insertByOuterInner(Index j, Index i) | 
|  | { | 
|  | return insert(IsRowMajor ? j : i, IsRowMajor ? i : j); | 
|  | } | 
|  |  | 
|  | /** Turns the matrix into the \em compressed format. | 
|  | */ | 
|  | void makeCompressed() | 
|  | { | 
|  | if(isCompressed()) | 
|  | return; | 
|  |  | 
|  | eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0); | 
|  |  | 
|  | Index oldStart = m_outerIndex[1]; | 
|  | m_outerIndex[1] = m_innerNonZeros[0]; | 
|  | for(Index j=1; j<m_outerSize; ++j) | 
|  | { | 
|  | Index nextOldStart = m_outerIndex[j+1]; | 
|  | Index offset = oldStart - m_outerIndex[j]; | 
|  | if(offset>0) | 
|  | { | 
|  | for(Index k=0; k<m_innerNonZeros[j]; ++k) | 
|  | { | 
|  | m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k); | 
|  | m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k); | 
|  | } | 
|  | } | 
|  | m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j]; | 
|  | oldStart = nextOldStart; | 
|  | } | 
|  | std::free(m_innerNonZeros); | 
|  | m_innerNonZeros = 0; | 
|  | m_data.resize(m_outerIndex[m_outerSize]); | 
|  | m_data.squeeze(); | 
|  | } | 
|  |  | 
|  | /** Turns the matrix into the uncompressed mode */ | 
|  | void uncompress() | 
|  | { | 
|  | if(m_innerNonZeros != 0) | 
|  | return; | 
|  | m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex))); | 
|  | for (Index i = 0; i < m_outerSize; i++) | 
|  | { | 
|  | m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerance \a epsilon */ | 
|  | void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) | 
|  | { | 
|  | prune(default_prunning_func(reference,epsilon)); | 
|  | } | 
|  |  | 
|  | /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep. | 
|  | * The functor type \a KeepFunc must implement the following function: | 
|  | * \code | 
|  | * bool operator() (const Index& row, const Index& col, const Scalar& value) const; | 
|  | * \endcode | 
|  | * \sa prune(Scalar,RealScalar) | 
|  | */ | 
|  | template<typename KeepFunc> | 
|  | void prune(const KeepFunc& keep = KeepFunc()) | 
|  | { | 
|  | // TODO optimize the uncompressed mode to avoid moving and allocating the data twice | 
|  | makeCompressed(); | 
|  |  | 
|  | StorageIndex k = 0; | 
|  | for(Index j=0; j<m_outerSize; ++j) | 
|  | { | 
|  | Index previousStart = m_outerIndex[j]; | 
|  | m_outerIndex[j] = k; | 
|  | Index end = m_outerIndex[j+1]; | 
|  | for(Index i=previousStart; i<end; ++i) | 
|  | { | 
|  | if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i))) | 
|  | { | 
|  | m_data.value(k) = m_data.value(i); | 
|  | m_data.index(k) = m_data.index(i); | 
|  | ++k; | 
|  | } | 
|  | } | 
|  | } | 
|  | m_outerIndex[m_outerSize] = k; | 
|  | m_data.resize(k,0); | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched. | 
|  | * | 
|  | * If the sizes of the matrix are decreased, then the matrix is turned to \b uncompressed-mode | 
|  | * and the storage of the out of bounds coefficients is kept and reserved. | 
|  | * Call makeCompressed() to pack the entries and squeeze extra memory. | 
|  | * | 
|  | * \sa reserve(), setZero(), makeCompressed() | 
|  | */ | 
|  | void conservativeResize(Index rows, Index cols) | 
|  | { | 
|  | // No change | 
|  | if (this->rows() == rows && this->cols() == cols) return; | 
|  |  | 
|  | // If one dimension is null, then there is nothing to be preserved | 
|  | if(rows==0 || cols==0) return resize(rows,cols); | 
|  |  | 
|  | Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows(); | 
|  | Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols(); | 
|  | StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows); | 
|  |  | 
|  | // Deals with inner non zeros | 
|  | if (m_innerNonZeros) | 
|  | { | 
|  | // Resize m_innerNonZeros | 
|  | StorageIndex *newInnerNonZeros = static_cast<StorageIndex*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex))); | 
|  | if (!newInnerNonZeros) internal::throw_std_bad_alloc(); | 
|  | m_innerNonZeros = newInnerNonZeros; | 
|  |  | 
|  | for(Index i=m_outerSize; i<m_outerSize+outerChange; i++) | 
|  | m_innerNonZeros[i] = 0; | 
|  | } | 
|  | else if (innerChange < 0) | 
|  | { | 
|  | // Inner size decreased: allocate a new m_innerNonZeros | 
|  | m_innerNonZeros = static_cast<StorageIndex*>(std::malloc((m_outerSize+outerChange+1) * sizeof(StorageIndex))); | 
|  | if (!m_innerNonZeros) internal::throw_std_bad_alloc(); | 
|  | for(Index i = 0; i < m_outerSize; i++) | 
|  | m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; | 
|  | } | 
|  |  | 
|  | // Change the m_innerNonZeros in case of a decrease of inner size | 
|  | if (m_innerNonZeros && innerChange < 0) | 
|  | { | 
|  | for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++) | 
|  | { | 
|  | StorageIndex &n = m_innerNonZeros[i]; | 
|  | StorageIndex start = m_outerIndex[i]; | 
|  | while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n; | 
|  | } | 
|  | } | 
|  |  | 
|  | m_innerSize = newInnerSize; | 
|  |  | 
|  | // Re-allocate outer index structure if necessary | 
|  | if (outerChange == 0) | 
|  | return; | 
|  |  | 
|  | StorageIndex *newOuterIndex = static_cast<StorageIndex*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex))); | 
|  | if (!newOuterIndex) internal::throw_std_bad_alloc(); | 
|  | m_outerIndex = newOuterIndex; | 
|  | if (outerChange > 0) | 
|  | { | 
|  | StorageIndex last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize]; | 
|  | for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++) | 
|  | m_outerIndex[i] = last; | 
|  | } | 
|  | m_outerSize += outerChange; | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero. | 
|  | * | 
|  | * This function does not free the currently allocated memory. To release as much as memory as possible, | 
|  | * call \code mat.data().squeeze(); \endcode after resizing it. | 
|  | * | 
|  | * \sa reserve(), setZero() | 
|  | */ | 
|  | void resize(Index rows, Index cols) | 
|  | { | 
|  | const Index outerSize = IsRowMajor ? rows : cols; | 
|  | m_innerSize = IsRowMajor ? cols : rows; | 
|  | m_data.clear(); | 
|  | if (m_outerSize != outerSize || m_outerSize==0) | 
|  | { | 
|  | std::free(m_outerIndex); | 
|  | m_outerIndex = static_cast<StorageIndex*>(std::malloc((outerSize + 1) * sizeof(StorageIndex))); | 
|  | if (!m_outerIndex) internal::throw_std_bad_alloc(); | 
|  |  | 
|  | m_outerSize = outerSize; | 
|  | } | 
|  | if(m_innerNonZeros) | 
|  | { | 
|  | std::free(m_innerNonZeros); | 
|  | m_innerNonZeros = 0; | 
|  | } | 
|  | memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex)); | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * Resize the nonzero vector to \a size */ | 
|  | void resizeNonZeros(Index size) | 
|  | { | 
|  | m_data.resize(size); | 
|  | } | 
|  |  | 
|  | /** \returns a const expression of the diagonal coefficients. */ | 
|  | const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); } | 
|  |  | 
|  | /** \returns a read-write expression of the diagonal coefficients. | 
|  | * \warning If the diagonal entries are written, then all diagonal | 
|  | * entries \b must already exist, otherwise an assertion will be raised. | 
|  | */ | 
|  | DiagonalReturnType diagonal() { return DiagonalReturnType(*this); } | 
|  |  | 
|  | /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */ | 
|  | inline SparseMatrix() | 
|  | : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) | 
|  | { | 
|  | check_template_parameters(); | 
|  | resize(0, 0); | 
|  | } | 
|  |  | 
|  | /** Constructs a \a rows \c x \a cols empty matrix */ | 
|  | inline SparseMatrix(Index rows, Index cols) | 
|  | : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) | 
|  | { | 
|  | check_template_parameters(); | 
|  | resize(rows, cols); | 
|  | } | 
|  |  | 
|  | /** Constructs a sparse matrix from the sparse expression \a other */ | 
|  | template<typename OtherDerived> | 
|  | inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other) | 
|  | : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|  | check_template_parameters(); | 
|  | const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit); | 
|  | if (needToTranspose) | 
|  | *this = other.derived(); | 
|  | else | 
|  | { | 
|  | #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN | 
|  | EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN | 
|  | #endif | 
|  | internal::call_assignment_no_alias(*this, other.derived()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** Constructs a sparse matrix from the sparse selfadjoint view \a other */ | 
|  | template<typename OtherDerived, unsigned int UpLo> | 
|  | inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other) | 
|  | : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) | 
|  | { | 
|  | check_template_parameters(); | 
|  | Base::operator=(other); | 
|  | } | 
|  |  | 
|  | /** Copy constructor (it performs a deep copy) */ | 
|  | inline SparseMatrix(const SparseMatrix& other) | 
|  | : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) | 
|  | { | 
|  | check_template_parameters(); | 
|  | *this = other.derived(); | 
|  | } | 
|  |  | 
|  | /** \brief Copy constructor with in-place evaluation */ | 
|  | template<typename OtherDerived> | 
|  | SparseMatrix(const ReturnByValue<OtherDerived>& other) | 
|  | : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) | 
|  | { | 
|  | check_template_parameters(); | 
|  | initAssignment(other); | 
|  | other.evalTo(*this); | 
|  | } | 
|  |  | 
|  | /** \brief Copy constructor with in-place evaluation */ | 
|  | template<typename OtherDerived> | 
|  | explicit SparseMatrix(const DiagonalBase<OtherDerived>& other) | 
|  | : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) | 
|  | { | 
|  | check_template_parameters(); | 
|  | *this = other.derived(); | 
|  | } | 
|  |  | 
|  | /** Swaps the content of two sparse matrices of the same type. | 
|  | * This is a fast operation that simply swaps the underlying pointers and parameters. */ | 
|  | inline void swap(SparseMatrix& other) | 
|  | { | 
|  | //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); | 
|  | std::swap(m_outerIndex, other.m_outerIndex); | 
|  | std::swap(m_innerSize, other.m_innerSize); | 
|  | std::swap(m_outerSize, other.m_outerSize); | 
|  | std::swap(m_innerNonZeros, other.m_innerNonZeros); | 
|  | m_data.swap(other.m_data); | 
|  | } | 
|  |  | 
|  | /** Sets *this to the identity matrix. | 
|  | * This function also turns the matrix into compressed mode, and drop any reserved memory. */ | 
|  | inline void setIdentity() | 
|  | { | 
|  | eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES"); | 
|  | this->m_data.resize(rows()); | 
|  | Eigen::Map<IndexVector>(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1)); | 
|  | Eigen::Map<ScalarVector>(this->m_data.valuePtr(), rows()).setOnes(); | 
|  | Eigen::Map<IndexVector>(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows())); | 
|  | std::free(m_innerNonZeros); | 
|  | m_innerNonZeros = 0; | 
|  | } | 
|  | inline SparseMatrix& operator=(const SparseMatrix& other) | 
|  | { | 
|  | if (other.isRValue()) | 
|  | { | 
|  | swap(other.const_cast_derived()); | 
|  | } | 
|  | else if(this!=&other) | 
|  | { | 
|  | #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN | 
|  | EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN | 
|  | #endif | 
|  | initAssignment(other); | 
|  | if(other.isCompressed()) | 
|  | { | 
|  | internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex); | 
|  | m_data = other.m_data; | 
|  | } | 
|  | else | 
|  | { | 
|  | Base::operator=(other); | 
|  | } | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename OtherDerived> | 
|  | inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other) | 
|  | { return Base::operator=(other.derived()); } | 
|  | #endif // EIGEN_PARSED_BY_DOXYGEN | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other); | 
|  |  | 
|  | friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m) | 
|  | { | 
|  | EIGEN_DBG_SPARSE( | 
|  | s << "Nonzero entries:\n"; | 
|  | if(m.isCompressed()) | 
|  | { | 
|  | for (Index i=0; i<m.nonZeros(); ++i) | 
|  | s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") "; | 
|  | } | 
|  | else | 
|  | { | 
|  | for (Index i=0; i<m.outerSize(); ++i) | 
|  | { | 
|  | Index p = m.m_outerIndex[i]; | 
|  | Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i]; | 
|  | Index k=p; | 
|  | for (; k<pe; ++k) { | 
|  | s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") "; | 
|  | } | 
|  | for (; k<m.m_outerIndex[i+1]; ++k) { | 
|  | s << "(_,_) "; | 
|  | } | 
|  | } | 
|  | } | 
|  | s << std::endl; | 
|  | s << std::endl; | 
|  | s << "Outer pointers:\n"; | 
|  | for (Index i=0; i<m.outerSize(); ++i) { | 
|  | s << m.m_outerIndex[i] << " "; | 
|  | } | 
|  | s << " $" << std::endl; | 
|  | if(!m.isCompressed()) | 
|  | { | 
|  | s << "Inner non zeros:\n"; | 
|  | for (Index i=0; i<m.outerSize(); ++i) { | 
|  | s << m.m_innerNonZeros[i] << " "; | 
|  | } | 
|  | s << " $" << std::endl; | 
|  | } | 
|  | s << std::endl; | 
|  | ); | 
|  | s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | /** Destructor */ | 
|  | inline ~SparseMatrix() | 
|  | { | 
|  | std::free(m_outerIndex); | 
|  | std::free(m_innerNonZeros); | 
|  | } | 
|  |  | 
|  | /** Overloaded for performance */ | 
|  | Scalar sum() const; | 
|  |  | 
|  | #   ifdef EIGEN_SPARSEMATRIX_PLUGIN | 
|  | #     include EIGEN_SPARSEMATRIX_PLUGIN | 
|  | #   endif | 
|  |  | 
|  | protected: | 
|  |  | 
|  | template<typename Other> | 
|  | void initAssignment(const Other& other) | 
|  | { | 
|  | resize(other.rows(), other.cols()); | 
|  | if(m_innerNonZeros) | 
|  | { | 
|  | std::free(m_innerNonZeros); | 
|  | m_innerNonZeros = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * \sa insert(Index,Index) */ | 
|  | EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col); | 
|  |  | 
|  | /** \internal | 
|  | * A vector object that is equal to 0 everywhere but v at the position i */ | 
|  | class SingletonVector | 
|  | { | 
|  | StorageIndex m_index; | 
|  | StorageIndex m_value; | 
|  | public: | 
|  | typedef StorageIndex value_type; | 
|  | SingletonVector(Index i, Index v) | 
|  | : m_index(convert_index(i)), m_value(convert_index(v)) | 
|  | {} | 
|  |  | 
|  | StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; } | 
|  | }; | 
|  |  | 
|  | /** \internal | 
|  | * \sa insert(Index,Index) */ | 
|  | EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col); | 
|  |  | 
|  | public: | 
|  | /** \internal | 
|  | * \sa insert(Index,Index) */ | 
|  | EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col) | 
|  | { | 
|  | const Index outer = IsRowMajor ? row : col; | 
|  | const Index inner = IsRowMajor ? col : row; | 
|  |  | 
|  | eigen_assert(!isCompressed()); | 
|  | eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer])); | 
|  |  | 
|  | Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++; | 
|  | m_data.index(p) = convert_index(inner); | 
|  | return (m_data.value(p) = 0); | 
|  | } | 
|  |  | 
|  | private: | 
|  | static void check_template_parameters() | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); | 
|  | EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); | 
|  | } | 
|  |  | 
|  | struct default_prunning_func { | 
|  | default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {} | 
|  | inline bool operator() (const Index&, const Index&, const Scalar& value) const | 
|  | { | 
|  | return !internal::isMuchSmallerThan(value, reference, epsilon); | 
|  | } | 
|  | Scalar reference; | 
|  | RealScalar epsilon; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename InputIterator, typename SparseMatrixType, typename DupFunctor> | 
|  | void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func) | 
|  | { | 
|  | enum { IsRowMajor = SparseMatrixType::IsRowMajor }; | 
|  | typedef typename SparseMatrixType::Scalar Scalar; | 
|  | typedef typename SparseMatrixType::StorageIndex StorageIndex; | 
|  | SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,StorageIndex> trMat(mat.rows(),mat.cols()); | 
|  |  | 
|  | if(begin!=end) | 
|  | { | 
|  | // pass 1: count the nnz per inner-vector | 
|  | typename SparseMatrixType::IndexVector wi(trMat.outerSize()); | 
|  | wi.setZero(); | 
|  | for(InputIterator it(begin); it!=end; ++it) | 
|  | { | 
|  | eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols()); | 
|  | wi(IsRowMajor ? it->col() : it->row())++; | 
|  | } | 
|  |  | 
|  | // pass 2: insert all the elements into trMat | 
|  | trMat.reserve(wi); | 
|  | for(InputIterator it(begin); it!=end; ++it) | 
|  | trMat.insertBackUncompressed(it->row(),it->col()) = it->value(); | 
|  |  | 
|  | // pass 3: | 
|  | trMat.collapseDuplicates(dup_func); | 
|  | } | 
|  |  | 
|  | // pass 4: transposed copy -> implicit sorting | 
|  | mat = trMat; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end. | 
|  | * | 
|  | * A \em triplet is a tuple (i,j,value) defining a non-zero element. | 
|  | * The input list of triplets does not have to be sorted, and can contains duplicated elements. | 
|  | * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up. | 
|  | * This is a \em O(n) operation, with \em n the number of triplet elements. | 
|  | * The initial contents of \c *this is destroyed. | 
|  | * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, | 
|  | * or the resize(Index,Index) method. The sizes are not extracted from the triplet list. | 
|  | * | 
|  | * The \a InputIterators value_type must provide the following interface: | 
|  | * \code | 
|  | * Scalar value() const; // the value | 
|  | * Scalar row() const;   // the row index i | 
|  | * Scalar col() const;   // the column index j | 
|  | * \endcode | 
|  | * See for instance the Eigen::Triplet template class. | 
|  | * | 
|  | * Here is a typical usage example: | 
|  | * \code | 
|  | typedef Triplet<double> T; | 
|  | std::vector<T> tripletList; | 
|  | triplets.reserve(estimation_of_entries); | 
|  | for(...) | 
|  | { | 
|  | // ... | 
|  | tripletList.push_back(T(i,j,v_ij)); | 
|  | } | 
|  | SparseMatrixType m(rows,cols); | 
|  | m.setFromTriplets(tripletList.begin(), tripletList.end()); | 
|  | // m is ready to go! | 
|  | * \endcode | 
|  | * | 
|  | * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define | 
|  | * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather | 
|  | * be explicitly stored into a std::vector for instance. | 
|  | */ | 
|  | template<typename Scalar, int _Options, typename _StorageIndex> | 
|  | template<typename InputIterators> | 
|  | void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end) | 
|  | { | 
|  | internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>()); | 
|  | } | 
|  |  | 
|  | /** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied: | 
|  | * \code | 
|  | * value = dup_func(OldValue, NewValue) | 
|  | * \endcode | 
|  | * Here is a C++11 example keeping the latest entry only: | 
|  | * \code | 
|  | * mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; }); | 
|  | * \endcode | 
|  | */ | 
|  | template<typename Scalar, int _Options, typename _StorageIndex> | 
|  | template<typename InputIterators,typename DupFunctor> | 
|  | void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func) | 
|  | { | 
|  | internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex>, DupFunctor>(begin, end, *this, dup_func); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename Scalar, int _Options, typename _StorageIndex> | 
|  | template<typename DupFunctor> | 
|  | void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor dup_func) | 
|  | { | 
|  | eigen_assert(!isCompressed()); | 
|  | // TODO, in practice we should be able to use m_innerNonZeros for that task | 
|  | IndexVector wi(innerSize()); | 
|  | wi.fill(-1); | 
|  | StorageIndex count = 0; | 
|  | // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers | 
|  | for(Index j=0; j<outerSize(); ++j) | 
|  | { | 
|  | StorageIndex start   = count; | 
|  | Index oldEnd  = m_outerIndex[j]+m_innerNonZeros[j]; | 
|  | for(Index k=m_outerIndex[j]; k<oldEnd; ++k) | 
|  | { | 
|  | Index i = m_data.index(k); | 
|  | if(wi(i)>=start) | 
|  | { | 
|  | // we already meet this entry => accumulate it | 
|  | m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k)); | 
|  | } | 
|  | else | 
|  | { | 
|  | m_data.value(count) = m_data.value(k); | 
|  | m_data.index(count) = m_data.index(k); | 
|  | wi(i) = count; | 
|  | ++count; | 
|  | } | 
|  | } | 
|  | m_outerIndex[j] = start; | 
|  | } | 
|  | m_outerIndex[m_outerSize] = count; | 
|  |  | 
|  | // turn the matrix into compressed form | 
|  | std::free(m_innerNonZeros); | 
|  | m_innerNonZeros = 0; | 
|  | m_data.resize(m_outerIndex[m_outerSize]); | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int _Options, typename _StorageIndex> | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const SparseMatrixBase<OtherDerived>& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|  |  | 
|  | #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN | 
|  | EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN | 
|  | #endif | 
|  |  | 
|  | const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit); | 
|  | if (needToTranspose) | 
|  | { | 
|  | #ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN | 
|  | EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN | 
|  | #endif | 
|  | // two passes algorithm: | 
|  | //  1 - compute the number of coeffs per dest inner vector | 
|  | //  2 - do the actual copy/eval | 
|  | // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed | 
|  | typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy; | 
|  | typedef typename internal::remove_all<OtherCopy>::type _OtherCopy; | 
|  | typedef internal::evaluator<_OtherCopy> OtherCopyEval; | 
|  | OtherCopy otherCopy(other.derived()); | 
|  | OtherCopyEval otherCopyEval(otherCopy); | 
|  |  | 
|  | SparseMatrix dest(other.rows(),other.cols()); | 
|  | Eigen::Map<IndexVector> (dest.m_outerIndex,dest.outerSize()).setZero(); | 
|  |  | 
|  | // pass 1 | 
|  | // FIXME the above copy could be merged with that pass | 
|  | for (Index j=0; j<otherCopy.outerSize(); ++j) | 
|  | for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it) | 
|  | ++dest.m_outerIndex[it.index()]; | 
|  |  | 
|  | // prefix sum | 
|  | StorageIndex count = 0; | 
|  | IndexVector positions(dest.outerSize()); | 
|  | for (Index j=0; j<dest.outerSize(); ++j) | 
|  | { | 
|  | StorageIndex tmp = dest.m_outerIndex[j]; | 
|  | dest.m_outerIndex[j] = count; | 
|  | positions[j] = count; | 
|  | count += tmp; | 
|  | } | 
|  | dest.m_outerIndex[dest.outerSize()] = count; | 
|  | // alloc | 
|  | dest.m_data.resize(count); | 
|  | // pass 2 | 
|  | for (StorageIndex j=0; j<otherCopy.outerSize(); ++j) | 
|  | { | 
|  | for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it) | 
|  | { | 
|  | Index pos = positions[it.index()]++; | 
|  | dest.m_data.index(pos) = j; | 
|  | dest.m_data.value(pos) = it.value(); | 
|  | } | 
|  | } | 
|  | this->swap(dest); | 
|  | return *this; | 
|  | } | 
|  | else | 
|  | { | 
|  | if(other.isRValue()) | 
|  | { | 
|  | initAssignment(other.derived()); | 
|  | } | 
|  | // there is no special optimization | 
|  | return Base::operator=(other.derived()); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename _Scalar, int _Options, typename _StorageIndex> | 
|  | typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col) | 
|  | { | 
|  | eigen_assert(row>=0 && row<rows() && col>=0 && col<cols()); | 
|  |  | 
|  | const Index outer = IsRowMajor ? row : col; | 
|  | const Index inner = IsRowMajor ? col : row; | 
|  |  | 
|  | if(isCompressed()) | 
|  | { | 
|  | if(nonZeros()==0) | 
|  | { | 
|  | // reserve space if not already done | 
|  | if(m_data.allocatedSize()==0) | 
|  | m_data.reserve(2*m_innerSize); | 
|  |  | 
|  | // turn the matrix into non-compressed mode | 
|  | m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex))); | 
|  | if(!m_innerNonZeros) internal::throw_std_bad_alloc(); | 
|  |  | 
|  | memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex)); | 
|  |  | 
|  | // pack all inner-vectors to the end of the pre-allocated space | 
|  | // and allocate the entire free-space to the first inner-vector | 
|  | StorageIndex end = convert_index(m_data.allocatedSize()); | 
|  | for(Index j=1; j<=m_outerSize; ++j) | 
|  | m_outerIndex[j] = end; | 
|  | } | 
|  | else | 
|  | { | 
|  | // turn the matrix into non-compressed mode | 
|  | m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex))); | 
|  | if(!m_innerNonZeros) internal::throw_std_bad_alloc(); | 
|  | for(Index j=0; j<m_outerSize; ++j) | 
|  | m_innerNonZeros[j] = m_outerIndex[j+1]-m_outerIndex[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // check whether we can do a fast "push back" insertion | 
|  | Index data_end = m_data.allocatedSize(); | 
|  |  | 
|  | // First case: we are filling a new inner vector which is packed at the end. | 
|  | // We assume that all remaining inner-vectors are also empty and packed to the end. | 
|  | if(m_outerIndex[outer]==data_end) | 
|  | { | 
|  | eigen_internal_assert(m_innerNonZeros[outer]==0); | 
|  |  | 
|  | // pack previous empty inner-vectors to end of the used-space | 
|  | // and allocate the entire free-space to the current inner-vector. | 
|  | StorageIndex p = convert_index(m_data.size()); | 
|  | Index j = outer; | 
|  | while(j>=0 && m_innerNonZeros[j]==0) | 
|  | m_outerIndex[j--] = p; | 
|  |  | 
|  | // push back the new element | 
|  | ++m_innerNonZeros[outer]; | 
|  | m_data.append(Scalar(0), inner); | 
|  |  | 
|  | // check for reallocation | 
|  | if(data_end != m_data.allocatedSize()) | 
|  | { | 
|  | // m_data has been reallocated | 
|  | //  -> move remaining inner-vectors back to the end of the free-space | 
|  | //     so that the entire free-space is allocated to the current inner-vector. | 
|  | eigen_internal_assert(data_end < m_data.allocatedSize()); | 
|  | StorageIndex new_end = convert_index(m_data.allocatedSize()); | 
|  | for(Index k=outer+1; k<=m_outerSize; ++k) | 
|  | if(m_outerIndex[k]==data_end) | 
|  | m_outerIndex[k] = new_end; | 
|  | } | 
|  | return m_data.value(p); | 
|  | } | 
|  |  | 
|  | // Second case: the next inner-vector is packed to the end | 
|  | // and the current inner-vector end match the used-space. | 
|  | if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size()) | 
|  | { | 
|  | eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0); | 
|  |  | 
|  | // add space for the new element | 
|  | ++m_innerNonZeros[outer]; | 
|  | m_data.resize(m_data.size()+1); | 
|  |  | 
|  | // check for reallocation | 
|  | if(data_end != m_data.allocatedSize()) | 
|  | { | 
|  | // m_data has been reallocated | 
|  | //  -> move remaining inner-vectors back to the end of the free-space | 
|  | //     so that the entire free-space is allocated to the current inner-vector. | 
|  | eigen_internal_assert(data_end < m_data.allocatedSize()); | 
|  | StorageIndex new_end = convert_index(m_data.allocatedSize()); | 
|  | for(Index k=outer+1; k<=m_outerSize; ++k) | 
|  | if(m_outerIndex[k]==data_end) | 
|  | m_outerIndex[k] = new_end; | 
|  | } | 
|  |  | 
|  | // and insert it at the right position (sorted insertion) | 
|  | Index startId = m_outerIndex[outer]; | 
|  | Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1; | 
|  | while ( (p > startId) && (m_data.index(p-1) > inner) ) | 
|  | { | 
|  | m_data.index(p) = m_data.index(p-1); | 
|  | m_data.value(p) = m_data.value(p-1); | 
|  | --p; | 
|  | } | 
|  |  | 
|  | m_data.index(p) = convert_index(inner); | 
|  | return (m_data.value(p) = 0); | 
|  | } | 
|  |  | 
|  | if(m_data.size() != m_data.allocatedSize()) | 
|  | { | 
|  | // make sure the matrix is compatible to random un-compressed insertion: | 
|  | m_data.resize(m_data.allocatedSize()); | 
|  | this->reserveInnerVectors(Array<StorageIndex,Dynamic,1>::Constant(m_outerSize, 2)); | 
|  | } | 
|  |  | 
|  | return insertUncompressed(row,col); | 
|  | } | 
|  |  | 
|  | template<typename _Scalar, int _Options, typename _StorageIndex> | 
|  | EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col) | 
|  | { | 
|  | eigen_assert(!isCompressed()); | 
|  |  | 
|  | const Index outer = IsRowMajor ? row : col; | 
|  | const StorageIndex inner = convert_index(IsRowMajor ? col : row); | 
|  |  | 
|  | Index room = m_outerIndex[outer+1] - m_outerIndex[outer]; | 
|  | StorageIndex innerNNZ = m_innerNonZeros[outer]; | 
|  | if(innerNNZ>=room) | 
|  | { | 
|  | // this inner vector is full, we need to reallocate the whole buffer :( | 
|  | reserve(SingletonVector(outer,std::max<StorageIndex>(2,innerNNZ))); | 
|  | } | 
|  |  | 
|  | Index startId = m_outerIndex[outer]; | 
|  | Index p = startId + m_innerNonZeros[outer]; | 
|  | while ( (p > startId) && (m_data.index(p-1) > inner) ) | 
|  | { | 
|  | m_data.index(p) = m_data.index(p-1); | 
|  | m_data.value(p) = m_data.value(p-1); | 
|  | --p; | 
|  | } | 
|  | eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end"); | 
|  |  | 
|  | m_innerNonZeros[outer]++; | 
|  |  | 
|  | m_data.index(p) = inner; | 
|  | return (m_data.value(p) = 0); | 
|  | } | 
|  |  | 
|  | template<typename _Scalar, int _Options, typename _StorageIndex> | 
|  | EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col) | 
|  | { | 
|  | eigen_assert(isCompressed()); | 
|  |  | 
|  | const Index outer = IsRowMajor ? row : col; | 
|  | const Index inner = IsRowMajor ? col : row; | 
|  |  | 
|  | Index previousOuter = outer; | 
|  | if (m_outerIndex[outer+1]==0) | 
|  | { | 
|  | // we start a new inner vector | 
|  | while (previousOuter>=0 && m_outerIndex[previousOuter]==0) | 
|  | { | 
|  | m_outerIndex[previousOuter] = convert_index(m_data.size()); | 
|  | --previousOuter; | 
|  | } | 
|  | m_outerIndex[outer+1] = m_outerIndex[outer]; | 
|  | } | 
|  |  | 
|  | // here we have to handle the tricky case where the outerIndex array | 
|  | // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g., | 
|  | // the 2nd inner vector... | 
|  | bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0)) | 
|  | && (std::size_t(m_outerIndex[outer+1]) == m_data.size()); | 
|  |  | 
|  | std::size_t startId = m_outerIndex[outer]; | 
|  | // FIXME let's make sure sizeof(long int) == sizeof(std::size_t) | 
|  | std::size_t p = m_outerIndex[outer+1]; | 
|  | ++m_outerIndex[outer+1]; | 
|  |  | 
|  | double reallocRatio = 1; | 
|  | if (m_data.allocatedSize()<=m_data.size()) | 
|  | { | 
|  | // if there is no preallocated memory, let's reserve a minimum of 32 elements | 
|  | if (m_data.size()==0) | 
|  | { | 
|  | m_data.reserve(32); | 
|  | } | 
|  | else | 
|  | { | 
|  | // we need to reallocate the data, to reduce multiple reallocations | 
|  | // we use a smart resize algorithm based on the current filling ratio | 
|  | // in addition, we use double to avoid integers overflows | 
|  | double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1); | 
|  | reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size()); | 
|  | // furthermore we bound the realloc ratio to: | 
|  | //   1) reduce multiple minor realloc when the matrix is almost filled | 
|  | //   2) avoid to allocate too much memory when the matrix is almost empty | 
|  | reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.); | 
|  | } | 
|  | } | 
|  | m_data.resize(m_data.size()+1,reallocRatio); | 
|  |  | 
|  | if (!isLastVec) | 
|  | { | 
|  | if (previousOuter==-1) | 
|  | { | 
|  | // oops wrong guess. | 
|  | // let's correct the outer offsets | 
|  | for (Index k=0; k<=(outer+1); ++k) | 
|  | m_outerIndex[k] = 0; | 
|  | Index k=outer+1; | 
|  | while(m_outerIndex[k]==0) | 
|  | m_outerIndex[k++] = 1; | 
|  | while (k<=m_outerSize && m_outerIndex[k]!=0) | 
|  | m_outerIndex[k++]++; | 
|  | p = 0; | 
|  | --k; | 
|  | k = m_outerIndex[k]-1; | 
|  | while (k>0) | 
|  | { | 
|  | m_data.index(k) = m_data.index(k-1); | 
|  | m_data.value(k) = m_data.value(k-1); | 
|  | k--; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | // we are not inserting into the last inner vec | 
|  | // update outer indices: | 
|  | Index j = outer+2; | 
|  | while (j<=m_outerSize && m_outerIndex[j]!=0) | 
|  | m_outerIndex[j++]++; | 
|  | --j; | 
|  | // shift data of last vecs: | 
|  | Index k = m_outerIndex[j]-1; | 
|  | while (k>=Index(p)) | 
|  | { | 
|  | m_data.index(k) = m_data.index(k-1); | 
|  | m_data.value(k) = m_data.value(k-1); | 
|  | k--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | while ( (p > startId) && (m_data.index(p-1) > inner) ) | 
|  | { | 
|  | m_data.index(p) = m_data.index(p-1); | 
|  | m_data.value(p) = m_data.value(p-1); | 
|  | --p; | 
|  | } | 
|  |  | 
|  | m_data.index(p) = inner; | 
|  | return (m_data.value(p) = 0); | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename _Scalar, int _Options, typename _StorageIndex> | 
|  | struct evaluator<SparseMatrix<_Scalar,_Options,_StorageIndex> > | 
|  | : evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > | 
|  | { | 
|  | typedef evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > Base; | 
|  | typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType; | 
|  | evaluator() : Base() {} | 
|  | explicit evaluator(const SparseMatrixType &mat) : Base(mat) {} | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_SPARSEMATRIX_H |