|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // The computeRoots function included in this is based on materials | 
|  | // covered by the following copyright and license: | 
|  | // | 
|  | // Geometric Tools, LLC | 
|  | // Copyright (c) 1998-2010 | 
|  | // Distributed under the Boost Software License, Version 1.0. | 
|  | // | 
|  | // Permission is hereby granted, free of charge, to any person or organization | 
|  | // obtaining a copy of the software and accompanying documentation covered by | 
|  | // this license (the "Software") to use, reproduce, display, distribute, | 
|  | // execute, and transmit the Software, and to prepare derivative works of the | 
|  | // Software, and to permit third-parties to whom the Software is furnished to | 
|  | // do so, all subject to the following: | 
|  | // | 
|  | // The copyright notices in the Software and this entire statement, including | 
|  | // the above license grant, this restriction and the following disclaimer, | 
|  | // must be included in all copies of the Software, in whole or in part, and | 
|  | // all derivative works of the Software, unless such copies or derivative | 
|  | // works are solely in the form of machine-executable object code generated by | 
|  | // a source language processor. | 
|  | // | 
|  | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT | 
|  | // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE | 
|  | // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, | 
|  | // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | 
|  | // DEALINGS IN THE SOFTWARE. | 
|  |  | 
|  | #include <iostream> | 
|  | #include <Eigen/Core> | 
|  | #include <Eigen/Eigenvalues> | 
|  | #include <Eigen/Geometry> | 
|  | #include <bench/BenchTimer.h> | 
|  |  | 
|  | using namespace Eigen; | 
|  | using namespace std; | 
|  |  | 
|  | template<typename Matrix, typename Roots> | 
|  | inline void computeRoots(const Matrix& m, Roots& roots) | 
|  | { | 
|  | typedef typename Matrix::Scalar Scalar; | 
|  | const Scalar s_inv3 = 1.0/3.0; | 
|  | const Scalar s_sqrt3 = std::sqrt(Scalar(3.0)); | 
|  |  | 
|  | // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The | 
|  | // eigenvalues are the roots to this equation, all guaranteed to be | 
|  | // real-valued, because the matrix is symmetric. | 
|  | Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1); | 
|  | Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2); | 
|  | Scalar c2 = m(0,0) + m(1,1) + m(2,2); | 
|  |  | 
|  | // Construct the parameters used in classifying the roots of the equation | 
|  | // and in solving the equation for the roots in closed form. | 
|  | Scalar c2_over_3 = c2*s_inv3; | 
|  | Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3; | 
|  | if (a_over_3 > Scalar(0)) | 
|  | a_over_3 = Scalar(0); | 
|  |  | 
|  | Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1)); | 
|  |  | 
|  | Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3; | 
|  | if (q > Scalar(0)) | 
|  | q = Scalar(0); | 
|  |  | 
|  | // Compute the eigenvalues by solving for the roots of the polynomial. | 
|  | Scalar rho = std::sqrt(-a_over_3); | 
|  | Scalar theta = std::atan2(std::sqrt(-q),half_b)*s_inv3; | 
|  | Scalar cos_theta = std::cos(theta); | 
|  | Scalar sin_theta = std::sin(theta); | 
|  | roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta; | 
|  | roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); | 
|  | roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); | 
|  | } | 
|  |  | 
|  | template<typename Matrix, typename Vector> | 
|  | void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals) | 
|  | { | 
|  | typedef typename Matrix::Scalar Scalar; | 
|  | // Scale the matrix so its entries are in [-1,1].  The scaling is applied | 
|  | // only when at least one matrix entry has magnitude larger than 1. | 
|  |  | 
|  | Scalar shift = mat.trace()/3; | 
|  | Matrix scaledMat = mat; | 
|  | scaledMat.diagonal().array() -= shift; | 
|  | Scalar scale = scaledMat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff(); | 
|  | scale = std::max(scale,Scalar(1)); | 
|  | scaledMat/=scale; | 
|  |  | 
|  | // Compute the eigenvalues | 
|  | //   scaledMat.setZero(); | 
|  | computeRoots(scaledMat,evals); | 
|  |  | 
|  | // compute the eigen vectors | 
|  | // **here we assume 3 different eigenvalues** | 
|  |  | 
|  | // "optimized version" which appears to be slower with gcc! | 
|  | //     Vector base; | 
|  | //     Scalar alpha, beta; | 
|  | //     base <<   scaledMat(1,0) * scaledMat(2,1), | 
|  | //               scaledMat(1,0) * scaledMat(2,0), | 
|  | //              -scaledMat(1,0) * scaledMat(1,0); | 
|  | //     for(int k=0; k<2; ++k) | 
|  | //     { | 
|  | //       alpha = scaledMat(0,0) - evals(k); | 
|  | //       beta  = scaledMat(1,1) - evals(k); | 
|  | //       evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized(); | 
|  | //     } | 
|  | //     evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized(); | 
|  |  | 
|  | //   // naive version | 
|  | //   Matrix tmp; | 
|  | //   tmp = scaledMat; | 
|  | //   tmp.diagonal().array() -= evals(0); | 
|  | //   evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized(); | 
|  | // | 
|  | //   tmp = scaledMat; | 
|  | //   tmp.diagonal().array() -= evals(1); | 
|  | //   evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized(); | 
|  | // | 
|  | //   tmp = scaledMat; | 
|  | //   tmp.diagonal().array() -= evals(2); | 
|  | //   evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized(); | 
|  |  | 
|  | // a more stable version: | 
|  | if((evals(2)-evals(0))<=Eigen::NumTraits<Scalar>::epsilon()) | 
|  | { | 
|  | evecs.setIdentity(); | 
|  | } | 
|  | else | 
|  | { | 
|  | Matrix tmp; | 
|  | tmp = scaledMat; | 
|  | tmp.diagonal ().array () -= evals (2); | 
|  | evecs.col (2) = tmp.row (0).cross (tmp.row (1)).normalized (); | 
|  |  | 
|  | tmp = scaledMat; | 
|  | tmp.diagonal ().array () -= evals (1); | 
|  | evecs.col(1) = tmp.row (0).cross(tmp.row (1)); | 
|  | Scalar n1 = evecs.col(1).norm(); | 
|  | if(n1<=Eigen::NumTraits<Scalar>::epsilon()) | 
|  | evecs.col(1) = evecs.col(2).unitOrthogonal(); | 
|  | else | 
|  | evecs.col(1) /= n1; | 
|  |  | 
|  | // make sure that evecs[1] is orthogonal to evecs[2] | 
|  | evecs.col(1) = evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized(); | 
|  | evecs.col(0) = evecs.col(2).cross(evecs.col(1)); | 
|  | } | 
|  |  | 
|  | // Rescale back to the original size. | 
|  | evals *= scale; | 
|  | evals.array()+=shift; | 
|  | } | 
|  |  | 
|  | int main() | 
|  | { | 
|  | BenchTimer t; | 
|  | int tries = 10; | 
|  | int rep = 400000; | 
|  | typedef Matrix3d Mat; | 
|  | typedef Vector3d Vec; | 
|  | Mat A = Mat::Random(3,3); | 
|  | A = A.adjoint() * A; | 
|  | //   Mat Q = A.householderQr().householderQ(); | 
|  | //   A = Q * Vec(2.2424567,2.2424566,7.454353).asDiagonal() * Q.transpose(); | 
|  |  | 
|  | SelfAdjointEigenSolver<Mat> eig(A); | 
|  | BENCH(t, tries, rep, eig.compute(A)); | 
|  | std::cout << "Eigen iterative:  " << t.best() << "s\n"; | 
|  |  | 
|  | BENCH(t, tries, rep, eig.computeDirect(A)); | 
|  | std::cout << "Eigen direct   :  " << t.best() << "s\n"; | 
|  |  | 
|  | Mat evecs; | 
|  | Vec evals; | 
|  | BENCH(t, tries, rep, eigen33(A,evecs,evals)); | 
|  | std::cout << "Direct: " << t.best() << "s\n\n"; | 
|  |  | 
|  | //   std::cerr << "Eigenvalue/eigenvector diffs:\n"; | 
|  | //   std::cerr << (evals - eig.eigenvalues()).transpose() << "\n"; | 
|  | //   for(int k=0;k<3;++k) | 
|  | //     if(evecs.col(k).dot(eig.eigenvectors().col(k))<0) | 
|  | //       evecs.col(k) = -evecs.col(k); | 
|  | //   std::cerr << evecs - eig.eigenvectors() << "\n\n"; | 
|  | } |