|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  | #include <iostream> | 
|  | #include "common.h" | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(gemm)(const char *opa, const char *opb, const int *m, const int *n, const int *k, const RealScalar *palpha, | 
|  | const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) | 
|  | { | 
|  | //   std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n"; | 
|  | typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar, internal::level3_blocking<Scalar,Scalar>&, Eigen::internal::GemmParallelInfo<DenseIndex>*); | 
|  | static const functype func[12] = { | 
|  | // array index: NOTR  | (NOTR << 2) | 
|  | (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,ColMajor,false,ColMajor>::run), | 
|  | // array index: TR    | (NOTR << 2) | 
|  | (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,false,ColMajor>::run), | 
|  | // array index: ADJ   | (NOTR << 2) | 
|  | (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (TR   << 2) | 
|  | (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,false,ColMajor>::run), | 
|  | // array index: TR    | (TR   << 2) | 
|  | (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,false,ColMajor>::run), | 
|  | // array index: ADJ   | (TR   << 2) | 
|  | (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,false,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (ADJ  << 2) | 
|  | (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor>::run), | 
|  | // array index: TR    | (ADJ  << 2) | 
|  | (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,Conj, ColMajor>::run), | 
|  | // array index: ADJ   | (ADJ  << 2) | 
|  | (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,Conj, ColMajor>::run), | 
|  | 0 | 
|  | }; | 
|  |  | 
|  | const Scalar* a = reinterpret_cast<const Scalar*>(pa); | 
|  | const Scalar* b = reinterpret_cast<const Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha  = *reinterpret_cast<const Scalar*>(palpha); | 
|  | Scalar beta   = *reinterpret_cast<const Scalar*>(pbeta); | 
|  |  | 
|  | int info = 0; | 
|  | if(OP(*opa)==INVALID)                                               info = 1; | 
|  | else if(OP(*opb)==INVALID)                                          info = 2; | 
|  | else if(*m<0)                                                       info = 3; | 
|  | else if(*n<0)                                                       info = 4; | 
|  | else if(*k<0)                                                       info = 5; | 
|  | else if(*lda<std::max(1,(OP(*opa)==NOTR)?*m:*k))                    info = 8; | 
|  | else if(*ldb<std::max(1,(OP(*opb)==NOTR)?*k:*n))                    info = 10; | 
|  | else if(*ldc<std::max(1,*m))                                        info = 13; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"GEMM ",&info,6); | 
|  |  | 
|  | if (*m == 0 || *n == 0) | 
|  | return 0; | 
|  |  | 
|  | if(beta!=Scalar(1)) | 
|  | { | 
|  | if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); | 
|  | else                matrix(c, *m, *n, *ldc) *= beta; | 
|  | } | 
|  |  | 
|  | if(*k == 0) | 
|  | return 0; | 
|  |  | 
|  | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,*k,1,true); | 
|  |  | 
|  | int code = OP(*opa) | (OP(*opb) << 2); | 
|  | func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, blocking, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(trsm)(const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n, | 
|  | const RealScalar *palpha,  const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb) | 
|  | { | 
|  | //   std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n"; | 
|  | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, internal::level3_blocking<Scalar,Scalar>&); | 
|  | static const functype func[32] = { | 
|  | // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0,          false,ColMajor,ColMajor>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0,          false,RowMajor,ColMajor>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0,          Conj, RowMajor,ColMajor>::run),\ | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0,          false,ColMajor,ColMajor>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0,          false,RowMajor,ColMajor>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0,          Conj, RowMajor,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0,          false,ColMajor,ColMajor>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0,          false,RowMajor,ColMajor>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0,          Conj, RowMajor,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0,          false,ColMajor,ColMajor>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0,          false,RowMajor,ColMajor>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0,          Conj, RowMajor,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,ColMajor,ColMajor>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,RowMajor,ColMajor>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,Conj, RowMajor,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,ColMajor,ColMajor>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,RowMajor,ColMajor>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,Conj, RowMajor,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,ColMajor,ColMajor>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,RowMajor,ColMajor>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,Conj, RowMajor,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,ColMajor,ColMajor>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,RowMajor,ColMajor>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,Conj, RowMajor,ColMajor>::run), | 
|  | 0 | 
|  | }; | 
|  |  | 
|  | const Scalar* a = reinterpret_cast<const Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar  alpha = *reinterpret_cast<const Scalar*>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if(SIDE(*side)==INVALID)                                            info = 1; | 
|  | else if(UPLO(*uplo)==INVALID)                                       info = 2; | 
|  | else if(OP(*opa)==INVALID)                                          info = 3; | 
|  | else if(DIAG(*diag)==INVALID)                                       info = 4; | 
|  | else if(*m<0)                                                       info = 5; | 
|  | else if(*n<0)                                                       info = 6; | 
|  | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 9; | 
|  | else if(*ldb<std::max(1,*m))                                        info = 11; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"TRSM ",&info,6); | 
|  |  | 
|  | if(*m==0 || *n==0) | 
|  | return 0; | 
|  |  | 
|  | int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); | 
|  |  | 
|  | if(SIDE(*side)==LEFT) | 
|  | { | 
|  | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m,1,false); | 
|  | func[code](*m, *n, a, *lda, b, *ldb, blocking); | 
|  | } | 
|  | else | 
|  | { | 
|  | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n,1,false); | 
|  | func[code](*n, *m, a, *lda, b, *ldb, blocking); | 
|  | } | 
|  |  | 
|  | if(alpha!=Scalar(1)) | 
|  | matrix(b,*m,*n,*ldb) *= alpha; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // b = alpha*op(a)*b  for side = 'L'or'l' | 
|  | // b = alpha*b*op(a)  for side = 'R'or'r' | 
|  | int EIGEN_BLAS_FUNC(trmm)(const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n, | 
|  | const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb) | 
|  | { | 
|  | //   std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n"; | 
|  | typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&, internal::level3_blocking<Scalar,Scalar>&); | 
|  | static const functype func[32] = { | 
|  | // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          true, ColMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          true, RowMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          true, RowMajor,Conj, ColMajor,false,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          false,ColMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          false,ColMajor,false,RowMajor,false,ColMajor>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          false,ColMajor,false,RowMajor,Conj, ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          true, ColMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          true, RowMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          true, RowMajor,Conj, ColMajor,false,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          false,ColMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          false,ColMajor,false,RowMajor,false,ColMajor>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          false,ColMajor,false,RowMajor,Conj, ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run), | 
|  | // array index: TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run), | 
|  | // array index: ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4) | 
|  | (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run), | 
|  | 0 | 
|  | }; | 
|  |  | 
|  | const Scalar* a = reinterpret_cast<const Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar  alpha = *reinterpret_cast<const Scalar*>(palpha); | 
|  |  | 
|  | int info = 0; | 
|  | if(SIDE(*side)==INVALID)                                            info = 1; | 
|  | else if(UPLO(*uplo)==INVALID)                                       info = 2; | 
|  | else if(OP(*opa)==INVALID)                                          info = 3; | 
|  | else if(DIAG(*diag)==INVALID)                                       info = 4; | 
|  | else if(*m<0)                                                       info = 5; | 
|  | else if(*n<0)                                                       info = 6; | 
|  | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 9; | 
|  | else if(*ldb<std::max(1,*m))                                        info = 11; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"TRMM ",&info,6); | 
|  |  | 
|  | int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); | 
|  |  | 
|  | if(*m==0 || *n==0) | 
|  | return 1; | 
|  |  | 
|  | // FIXME find a way to avoid this copy | 
|  | Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp = matrix(b,*m,*n,*ldb); | 
|  | matrix(b,*m,*n,*ldb).setZero(); | 
|  |  | 
|  | if(SIDE(*side)==LEFT) | 
|  | { | 
|  | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m,1,false); | 
|  | func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha, blocking); | 
|  | } | 
|  | else | 
|  | { | 
|  | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n,1,false); | 
|  | func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha, blocking); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // c = alpha*a*b + beta*c  for side = 'L'or'l' | 
|  | // c = alpha*b*a + beta*c  for side = 'R'or'r | 
|  | int EIGEN_BLAS_FUNC(symm)(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, | 
|  | const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) | 
|  | { | 
|  | //   std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n"; | 
|  | const Scalar* a = reinterpret_cast<const Scalar*>(pa); | 
|  | const Scalar* b = reinterpret_cast<const Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar*>(palpha); | 
|  | Scalar beta  = *reinterpret_cast<const Scalar*>(pbeta); | 
|  |  | 
|  | int info = 0; | 
|  | if(SIDE(*side)==INVALID)                                            info = 1; | 
|  | else if(UPLO(*uplo)==INVALID)                                       info = 2; | 
|  | else if(*m<0)                                                       info = 3; | 
|  | else if(*n<0)                                                       info = 4; | 
|  | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 7; | 
|  | else if(*ldb<std::max(1,*m))                                        info = 9; | 
|  | else if(*ldc<std::max(1,*m))                                        info = 12; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"SYMM ",&info,6); | 
|  |  | 
|  | if(beta!=Scalar(1)) | 
|  | { | 
|  | if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); | 
|  | else                matrix(c, *m, *n, *ldc) *= beta; | 
|  | } | 
|  |  | 
|  | if(*m==0 || *n==0) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int size = (SIDE(*side)==LEFT) ? (*m) : (*n); | 
|  | #if ISCOMPLEX | 
|  | // FIXME add support for symmetric complex matrix | 
|  | Matrix<Scalar,Dynamic,Dynamic,ColMajor> matA(size,size); | 
|  | if(UPLO(*uplo)==UP) | 
|  | { | 
|  | matA.triangularView<Upper>() = matrix(a,size,size,*lda); | 
|  | matA.triangularView<Lower>() = matrix(a,size,size,*lda).transpose(); | 
|  | } | 
|  | else if(UPLO(*uplo)==LO) | 
|  | { | 
|  | matA.triangularView<Lower>() = matrix(a,size,size,*lda); | 
|  | matA.triangularView<Upper>() = matrix(a,size,size,*lda).transpose(); | 
|  | } | 
|  | if(SIDE(*side)==LEFT) | 
|  | matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb); | 
|  | else if(SIDE(*side)==RIGHT) | 
|  | matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA; | 
|  | #else | 
|  | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,size,1,false); | 
|  |  | 
|  | if(SIDE(*side)==LEFT) | 
|  | if(UPLO(*uplo)==UP)       internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha, blocking); | 
|  | else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha, blocking); | 
|  | else                      return 0; | 
|  | else if(SIDE(*side)==RIGHT) | 
|  | if(UPLO(*uplo)==UP)       internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, RowMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha, blocking); | 
|  | else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha, blocking); | 
|  | else                      return 0; | 
|  | else | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // c = alpha*a*a' + beta*c  for op = 'N'or'n' | 
|  | // c = alpha*a'*a + beta*c  for op = 'T'or't','C'or'c' | 
|  | int EIGEN_BLAS_FUNC(syrk)(const char *uplo, const char *op, const int *n, const int *k, | 
|  | const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc) | 
|  | { | 
|  | //   std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; | 
|  | #if !ISCOMPLEX | 
|  | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&, internal::level3_blocking<Scalar,Scalar>&); | 
|  | static const functype func[8] = { | 
|  | // array index: NOTR  | (UP << 2) | 
|  | (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, Upper>::run), | 
|  | // array index: TR    | (UP << 2) | 
|  | (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, Upper>::run), | 
|  | // array index: ADJ   | (UP << 2) | 
|  | (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,Upper>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LO << 2) | 
|  | (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, Lower>::run), | 
|  | // array index: TR    | (LO << 2) | 
|  | (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, Lower>::run), | 
|  | // array index: ADJ   | (LO << 2) | 
|  | (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,Lower>::run), | 
|  | 0 | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | const Scalar* a = reinterpret_cast<const Scalar*>(pa); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar*>(palpha); | 
|  | Scalar beta  = *reinterpret_cast<const Scalar*>(pbeta); | 
|  |  | 
|  | int info = 0; | 
|  | if(UPLO(*uplo)==INVALID)                                            info = 1; | 
|  | else if(OP(*op)==INVALID || (ISCOMPLEX && OP(*op)==ADJ) )           info = 2; | 
|  | else if(*n<0)                                                       info = 3; | 
|  | else if(*k<0)                                                       info = 4; | 
|  | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7; | 
|  | else if(*ldc<std::max(1,*n))                                        info = 10; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"SYRK ",&info,6); | 
|  |  | 
|  | if(beta!=Scalar(1)) | 
|  | { | 
|  | if(UPLO(*uplo)==UP) | 
|  | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | 
|  | else                matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; | 
|  | else | 
|  | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | 
|  | else                matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; | 
|  | } | 
|  |  | 
|  | if(*n==0 || *k==0) | 
|  | return 0; | 
|  |  | 
|  | #if ISCOMPLEX | 
|  | // FIXME add support for symmetric complex matrix | 
|  | if(UPLO(*uplo)==UP) | 
|  | { | 
|  | if(OP(*op)==NOTR) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda); | 
|  | } | 
|  | else | 
|  | { | 
|  | if(OP(*op)==NOTR) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose(); | 
|  | else | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda); | 
|  | } | 
|  | #else | 
|  | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*n,*n,*k,1,false); | 
|  |  | 
|  | int code = OP(*op) | (UPLO(*uplo) << 2); | 
|  | func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha, blocking); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // c = alpha*a*b' + alpha*b*a' + beta*c  for op = 'N'or'n' | 
|  | // c = alpha*a'*b + alpha*b'*a + beta*c  for op = 'T'or't' | 
|  | int EIGEN_BLAS_FUNC(syr2k)(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, | 
|  | const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) | 
|  | { | 
|  | const Scalar* a = reinterpret_cast<const Scalar*>(pa); | 
|  | const Scalar* b = reinterpret_cast<const Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar*>(palpha); | 
|  | Scalar beta  = *reinterpret_cast<const Scalar*>(pbeta); | 
|  |  | 
|  | //   std::cerr << "in syr2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << *ldb << " " << beta << " " << *ldc << "\n"; | 
|  |  | 
|  | int info = 0; | 
|  | if(UPLO(*uplo)==INVALID)                                            info = 1; | 
|  | else if(OP(*op)==INVALID || (ISCOMPLEX && OP(*op)==ADJ) )           info = 2; | 
|  | else if(*n<0)                                                       info = 3; | 
|  | else if(*k<0)                                                       info = 4; | 
|  | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7; | 
|  | else if(*ldb<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 9; | 
|  | else if(*ldc<std::max(1,*n))                                        info = 12; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"SYR2K",&info,6); | 
|  |  | 
|  | if(beta!=Scalar(1)) | 
|  | { | 
|  | if(UPLO(*uplo)==UP) | 
|  | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | 
|  | else                matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; | 
|  | else | 
|  | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | 
|  | else                matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; | 
|  | } | 
|  |  | 
|  | if(*k==0) | 
|  | return 1; | 
|  |  | 
|  | if(OP(*op)==NOTR) | 
|  | { | 
|  | if(UPLO(*uplo)==UP) | 
|  | { | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() | 
|  | += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose() | 
|  | +  alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose(); | 
|  | } | 
|  | else if(UPLO(*uplo)==LO) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() | 
|  | += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose() | 
|  | +  alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose(); | 
|  | } | 
|  | else if(OP(*op)==TR || OP(*op)==ADJ) | 
|  | { | 
|  | if(UPLO(*uplo)==UP) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() | 
|  | += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb) | 
|  | +  alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda); | 
|  | else if(UPLO(*uplo)==LO) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() | 
|  | += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb) | 
|  | +  alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if ISCOMPLEX | 
|  |  | 
|  | // c = alpha*a*b + beta*c  for side = 'L'or'l' | 
|  | // c = alpha*b*a + beta*c  for side = 'R'or'r | 
|  | int EIGEN_BLAS_FUNC(hemm)(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, | 
|  | const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) | 
|  | { | 
|  | const Scalar* a = reinterpret_cast<const Scalar*>(pa); | 
|  | const Scalar* b = reinterpret_cast<const Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar*>(palpha); | 
|  | Scalar beta  = *reinterpret_cast<const Scalar*>(pbeta); | 
|  |  | 
|  | //   std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; | 
|  |  | 
|  | int info = 0; | 
|  | if(SIDE(*side)==INVALID)                                            info = 1; | 
|  | else if(UPLO(*uplo)==INVALID)                                       info = 2; | 
|  | else if(*m<0)                                                       info = 3; | 
|  | else if(*n<0)                                                       info = 4; | 
|  | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 7; | 
|  | else if(*ldb<std::max(1,*m))                                        info = 9; | 
|  | else if(*ldc<std::max(1,*m))                                        info = 12; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"HEMM ",&info,6); | 
|  |  | 
|  | if(beta==Scalar(0))       matrix(c, *m, *n, *ldc).setZero(); | 
|  | else if(beta!=Scalar(1))  matrix(c, *m, *n, *ldc) *= beta; | 
|  |  | 
|  | if(*m==0 || *n==0) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int size = (SIDE(*side)==LEFT) ? (*m) : (*n); | 
|  | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,size,1,false); | 
|  |  | 
|  | if(SIDE(*side)==LEFT) | 
|  | { | 
|  | if(UPLO(*uplo)==UP)       internal::product_selfadjoint_matrix<Scalar,DenseIndex,RowMajor,true,Conj,  ColMajor,false,false, ColMajor> | 
|  | ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha, blocking); | 
|  | else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,true,false, ColMajor,false,false, ColMajor> | 
|  | ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha, blocking); | 
|  | else                      return 0; | 
|  | } | 
|  | else if(SIDE(*side)==RIGHT) | 
|  | { | 
|  | if(UPLO(*uplo)==UP)       matrix(c,*m,*n,*ldc) += alpha * matrix(b,*m,*n,*ldb) * matrix(a,*n,*n,*lda).selfadjointView<Upper>();/*internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, RowMajor,true,Conj,  ColMajor> | 
|  | ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha, blocking);*/ | 
|  | else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, ColMajor,true,false, ColMajor> | 
|  | ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha, blocking); | 
|  | else                      return 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // c = alpha*a*conj(a') + beta*c  for op = 'N'or'n' | 
|  | // c = alpha*conj(a')*a + beta*c  for op  = 'C'or'c' | 
|  | int EIGEN_BLAS_FUNC(herk)(const char *uplo, const char *op, const int *n, const int *k, | 
|  | const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc) | 
|  | { | 
|  | //   std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; | 
|  |  | 
|  | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&, internal::level3_blocking<Scalar,Scalar>&); | 
|  | static const functype func[8] = { | 
|  | // array index: NOTR  | (UP << 2) | 
|  | (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,Upper>::run), | 
|  | 0, | 
|  | // array index: ADJ   | (UP << 2) | 
|  | (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,Upper>::run), | 
|  | 0, | 
|  | // array index: NOTR  | (LO << 2) | 
|  | (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,Lower>::run), | 
|  | 0, | 
|  | // array index: ADJ   | (LO << 2) | 
|  | (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,Lower>::run), | 
|  | 0 | 
|  | }; | 
|  |  | 
|  | const Scalar* a = reinterpret_cast<const Scalar*>(pa); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | RealScalar alpha = *palpha; | 
|  | RealScalar beta  = *pbeta; | 
|  |  | 
|  | //   std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; | 
|  |  | 
|  | int info = 0; | 
|  | if(UPLO(*uplo)==INVALID)                                            info = 1; | 
|  | else if((OP(*op)==INVALID) || (OP(*op)==TR))                        info = 2; | 
|  | else if(*n<0)                                                       info = 3; | 
|  | else if(*k<0)                                                       info = 4; | 
|  | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7; | 
|  | else if(*ldc<std::max(1,*n))                                        info = 10; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"HERK ",&info,6); | 
|  |  | 
|  | int code = OP(*op) | (UPLO(*uplo) << 2); | 
|  |  | 
|  | if(beta!=RealScalar(1)) | 
|  | { | 
|  | if(UPLO(*uplo)==UP) | 
|  | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | 
|  | else                matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; | 
|  | else | 
|  | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | 
|  | else                matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; | 
|  |  | 
|  | if(beta!=Scalar(0)) | 
|  | { | 
|  | matrix(c, *n, *n, *ldc).diagonal().real() *= beta; | 
|  | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if(*k>0 && alpha!=RealScalar(0)) | 
|  | { | 
|  | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*n,*n,*k,1,false); | 
|  | func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha, blocking); | 
|  | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c,  for op = 'N'or'n' | 
|  | // c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c,  for op = 'C'or'c' | 
|  | int EIGEN_BLAS_FUNC(her2k)(const char *uplo, const char *op, const int *n, const int *k, | 
|  | const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) | 
|  | { | 
|  | const Scalar* a = reinterpret_cast<const Scalar*>(pa); | 
|  | const Scalar* b = reinterpret_cast<const Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<const Scalar*>(palpha); | 
|  | RealScalar beta  = *pbeta; | 
|  |  | 
|  | //   std::cerr << "in her2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << *ldb << " " << beta << " " << *ldc << "\n"; | 
|  |  | 
|  | int info = 0; | 
|  | if(UPLO(*uplo)==INVALID)                                            info = 1; | 
|  | else if((OP(*op)==INVALID) || (OP(*op)==TR))                        info = 2; | 
|  | else if(*n<0)                                                       info = 3; | 
|  | else if(*k<0)                                                       info = 4; | 
|  | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7; | 
|  | else if(*ldb<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 9; | 
|  | else if(*ldc<std::max(1,*n))                                        info = 12; | 
|  | if(info) | 
|  | return xerbla_(SCALAR_SUFFIX_UP"HER2K",&info,6); | 
|  |  | 
|  | if(beta!=RealScalar(1)) | 
|  | { | 
|  | if(UPLO(*uplo)==UP) | 
|  | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); | 
|  | else                matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; | 
|  | else | 
|  | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); | 
|  | else                matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; | 
|  |  | 
|  | if(beta!=Scalar(0)) | 
|  | { | 
|  | matrix(c, *n, *n, *ldc).diagonal().real() *= beta; | 
|  | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | 
|  | } | 
|  | } | 
|  | else if(*k>0 && alpha!=Scalar(0)) | 
|  | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); | 
|  |  | 
|  | if(*k==0) | 
|  | return 1; | 
|  |  | 
|  | if(OP(*op)==NOTR) | 
|  | { | 
|  | if(UPLO(*uplo)==UP) | 
|  | { | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() | 
|  | +=            alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint() | 
|  | +  numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint(); | 
|  | } | 
|  | else if(UPLO(*uplo)==LO) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() | 
|  | += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint() | 
|  | +  numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint(); | 
|  | } | 
|  | else if(OP(*op)==ADJ) | 
|  | { | 
|  | if(UPLO(*uplo)==UP) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Upper>() | 
|  | +=             alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb) | 
|  | +  numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda); | 
|  | else if(UPLO(*uplo)==LO) | 
|  | matrix(c, *n, *n, *ldc).triangularView<Lower>() | 
|  | +=             alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb) | 
|  | +  numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #endif // ISCOMPLEX |