|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "quaternion_demo.h" | 
|  | #include "icosphere.h" | 
|  |  | 
|  | #include <Eigen/Geometry> | 
|  | #include <Eigen/QR> | 
|  | #include <Eigen/LU> | 
|  |  | 
|  | #include <iostream> | 
|  | #include <QEvent> | 
|  | #include <QMouseEvent> | 
|  | #include <QInputDialog> | 
|  | #include <QGridLayout> | 
|  | #include <QButtonGroup> | 
|  | #include <QRadioButton> | 
|  | #include <QDockWidget> | 
|  | #include <QPushButton> | 
|  | #include <QGroupBox> | 
|  |  | 
|  | using namespace Eigen; | 
|  |  | 
|  | class FancySpheres | 
|  | { | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | 
|  |  | 
|  | FancySpheres() | 
|  | { | 
|  | const int levels = 4; | 
|  | const float scale = 0.33; | 
|  | float radius = 100; | 
|  | std::vector<int> parents; | 
|  |  | 
|  | // leval 0 | 
|  | mCenters.push_back(Vector3f::Zero()); | 
|  | parents.push_back(-1); | 
|  | mRadii.push_back(radius); | 
|  |  | 
|  | // generate level 1 using icosphere vertices | 
|  | radius *= 0.45; | 
|  | { | 
|  | float dist = mRadii[0]*0.9; | 
|  | for (int i=0; i<12; ++i) | 
|  | { | 
|  | mCenters.push_back(mIcoSphere.vertices()[i] * dist); | 
|  | mRadii.push_back(radius); | 
|  | parents.push_back(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const float angles [10] = { | 
|  | 0, 0, | 
|  | M_PI, 0.*M_PI, | 
|  | M_PI, 0.5*M_PI, | 
|  | M_PI, 1.*M_PI, | 
|  | M_PI, 1.5*M_PI | 
|  | }; | 
|  |  | 
|  | // generate other levels | 
|  | int start = 1; | 
|  | for (int l=1; l<levels; l++) | 
|  | { | 
|  | radius *= scale; | 
|  | int end = mCenters.size(); | 
|  | for (int i=start; i<end; ++i) | 
|  | { | 
|  | Vector3f c = mCenters[i]; | 
|  | Vector3f ax0 = (c - mCenters[parents[i]]).normalized(); | 
|  | Vector3f ax1 = ax0.unitOrthogonal(); | 
|  | Quaternionf q; | 
|  | q.setFromTwoVectors(Vector3f::UnitZ(), ax0); | 
|  | Affine3f t = Translation3f(c) * q * Scaling(mRadii[i]+radius); | 
|  | for (int j=0; j<5; ++j) | 
|  | { | 
|  | Vector3f newC = c + ( (AngleAxisf(angles[j*2+1], ax0) | 
|  | * AngleAxisf(angles[j*2+0] * (l==1 ? 0.35 : 0.5), ax1)) * ax0) | 
|  | * (mRadii[i] + radius*0.8); | 
|  | mCenters.push_back(newC); | 
|  | mRadii.push_back(radius); | 
|  | parents.push_back(i); | 
|  | } | 
|  | } | 
|  | start = end; | 
|  | } | 
|  | } | 
|  |  | 
|  | void draw() | 
|  | { | 
|  | int end = mCenters.size(); | 
|  | glEnable(GL_NORMALIZE); | 
|  | for (int i=0; i<end; ++i) | 
|  | { | 
|  | Affine3f t = Translation3f(mCenters[i]) * Scaling(mRadii[i]); | 
|  | gpu.pushMatrix(GL_MODELVIEW); | 
|  | gpu.multMatrix(t.matrix(),GL_MODELVIEW); | 
|  | mIcoSphere.draw(2); | 
|  | gpu.popMatrix(GL_MODELVIEW); | 
|  | } | 
|  | glDisable(GL_NORMALIZE); | 
|  | } | 
|  | protected: | 
|  | std::vector<Vector3f> mCenters; | 
|  | std::vector<float> mRadii; | 
|  | IcoSphere mIcoSphere; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // generic linear interpolation method | 
|  | template<typename T> T lerp(float t, const T& a, const T& b) | 
|  | { | 
|  | return a*(1-t) + b*t; | 
|  | } | 
|  |  | 
|  | // quaternion slerp | 
|  | template<> Quaternionf lerp(float t, const Quaternionf& a, const Quaternionf& b) | 
|  | { return a.slerp(t,b); } | 
|  |  | 
|  | // linear interpolation of a frame using the type OrientationType | 
|  | // to perform the interpolation of the orientations | 
|  | template<typename OrientationType> | 
|  | inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b) | 
|  | { | 
|  | return Frame(lerp(alpha,a.position,b.position), | 
|  | Quaternionf(lerp(alpha,OrientationType(a.orientation),OrientationType(b.orientation)))); | 
|  | } | 
|  |  | 
|  | template<typename _Scalar> class EulerAngles | 
|  | { | 
|  | public: | 
|  | enum { Dim = 3 }; | 
|  | typedef _Scalar Scalar; | 
|  | typedef Matrix<Scalar,3,3> Matrix3; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  | typedef Quaternion<Scalar> QuaternionType; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | Vector3 m_angles; | 
|  |  | 
|  | public: | 
|  |  | 
|  | EulerAngles() {} | 
|  | inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {} | 
|  | inline EulerAngles(const QuaternionType& q) { *this = q; } | 
|  |  | 
|  | const Vector3& coeffs() const { return m_angles; } | 
|  | Vector3& coeffs() { return m_angles; } | 
|  |  | 
|  | EulerAngles& operator=(const QuaternionType& q) | 
|  | { | 
|  | Matrix3 m = q.toRotationMatrix(); | 
|  | return *this = m; | 
|  | } | 
|  |  | 
|  | EulerAngles& operator=(const Matrix3& m) | 
|  | { | 
|  | // mat =  cy*cz          -cy*sz           sy | 
|  | //        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx | 
|  | //       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy | 
|  | m_angles.coeffRef(1) = std::asin(m.coeff(0,2)); | 
|  | m_angles.coeffRef(0) = std::atan2(-m.coeff(1,2),m.coeff(2,2)); | 
|  | m_angles.coeffRef(2) = std::atan2(-m.coeff(0,1),m.coeff(0,0)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Matrix3 toRotationMatrix(void) const | 
|  | { | 
|  | Vector3 c = m_angles.array().cos(); | 
|  | Vector3 s = m_angles.array().sin(); | 
|  | Matrix3 res; | 
|  | res <<  c.y()*c.z(),                    -c.y()*s.z(),                   s.y(), | 
|  | c.z()*s.x()*s.y()+c.x()*s.z(),  c.x()*c.z()-s.x()*s.y()*s.z(),  -c.y()*s.x(), | 
|  | -c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(),  c.x()*c.y(); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | operator QuaternionType() { return QuaternionType(toRotationMatrix()); } | 
|  | }; | 
|  |  | 
|  | // Euler angles slerp | 
|  | template<> EulerAngles<float> lerp(float t, const EulerAngles<float>& a, const EulerAngles<float>& b) | 
|  | { | 
|  | EulerAngles<float> res; | 
|  | res.coeffs() = lerp(t, a.coeffs(), b.coeffs()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | RenderingWidget::RenderingWidget() | 
|  | { | 
|  | mAnimate = false; | 
|  | mCurrentTrackingMode = TM_NO_TRACK; | 
|  | mNavMode = NavTurnAround; | 
|  | mLerpMode = LerpQuaternion; | 
|  | mRotationMode = RotationStable; | 
|  | mTrackball.setCamera(&mCamera); | 
|  |  | 
|  | // required to capture key press events | 
|  | setFocusPolicy(Qt::ClickFocus); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::grabFrame(void) | 
|  | { | 
|  | // ask user for a time | 
|  | bool ok = false; | 
|  | double t = 0; | 
|  | if (!m_timeline.empty()) | 
|  | t = (--m_timeline.end())->first + 1.; | 
|  | t = QInputDialog::getDouble(this, "Eigen's RenderingWidget", "time value: ", | 
|  | t, 0, 1e3, 1, &ok); | 
|  | if (ok) | 
|  | { | 
|  | Frame aux; | 
|  | aux.orientation = mCamera.viewMatrix().linear(); | 
|  | aux.position = mCamera.viewMatrix().translation(); | 
|  | m_timeline[t] = aux; | 
|  | } | 
|  | } | 
|  |  | 
|  | void RenderingWidget::drawScene() | 
|  | { | 
|  | static FancySpheres sFancySpheres; | 
|  | float length = 50; | 
|  | gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitX(), Color(1,0,0,1)); | 
|  | gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitY(), Color(0,1,0,1)); | 
|  | gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitZ(), Color(0,0,1,1)); | 
|  |  | 
|  | // draw the fractal object | 
|  | float sqrt3 = std::sqrt(3.); | 
|  | glLightfv(GL_LIGHT0, GL_AMBIENT, Vector4f(0.5,0.5,0.5,1).data()); | 
|  | glLightfv(GL_LIGHT0, GL_DIFFUSE, Vector4f(0.5,1,0.5,1).data()); | 
|  | glLightfv(GL_LIGHT0, GL_SPECULAR, Vector4f(1,1,1,1).data()); | 
|  | glLightfv(GL_LIGHT0, GL_POSITION, Vector4f(-sqrt3,-sqrt3,sqrt3,0).data()); | 
|  |  | 
|  | glLightfv(GL_LIGHT1, GL_AMBIENT, Vector4f(0,0,0,1).data()); | 
|  | glLightfv(GL_LIGHT1, GL_DIFFUSE, Vector4f(1,0.5,0.5,1).data()); | 
|  | glLightfv(GL_LIGHT1, GL_SPECULAR, Vector4f(1,1,1,1).data()); | 
|  | glLightfv(GL_LIGHT1, GL_POSITION, Vector4f(-sqrt3,sqrt3,-sqrt3,0).data()); | 
|  |  | 
|  | glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, Vector4f(0.7, 0.7, 0.7, 1).data()); | 
|  | glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, Vector4f(0.8, 0.75, 0.6, 1).data()); | 
|  | glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, Vector4f(1, 1, 1, 1).data()); | 
|  | glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64); | 
|  |  | 
|  | glEnable(GL_LIGHTING); | 
|  | glEnable(GL_LIGHT0); | 
|  | glEnable(GL_LIGHT1); | 
|  |  | 
|  | sFancySpheres.draw(); | 
|  | glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data()); | 
|  | glNormalPointer(GL_FLOAT, 0, mNormals[0].data()); | 
|  | glEnableClientState(GL_VERTEX_ARRAY); | 
|  | glEnableClientState(GL_NORMAL_ARRAY); | 
|  | glDrawArrays(GL_TRIANGLES, 0, mVertices.size()); | 
|  | glDisableClientState(GL_VERTEX_ARRAY); | 
|  | glDisableClientState(GL_NORMAL_ARRAY); | 
|  |  | 
|  | glDisable(GL_LIGHTING); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::animate() | 
|  | { | 
|  | m_alpha += double(m_timer.interval()) * 1e-3; | 
|  |  | 
|  | TimeLine::const_iterator hi = m_timeline.upper_bound(m_alpha); | 
|  | TimeLine::const_iterator lo = hi; | 
|  | --lo; | 
|  |  | 
|  | Frame currentFrame; | 
|  |  | 
|  | if(hi==m_timeline.end()) | 
|  | { | 
|  | // end | 
|  | currentFrame = lo->second; | 
|  | stopAnimation(); | 
|  | } | 
|  | else if(hi==m_timeline.begin()) | 
|  | { | 
|  | // start | 
|  | currentFrame = hi->second; | 
|  | } | 
|  | else | 
|  | { | 
|  | float s = (m_alpha - lo->first)/(hi->first - lo->first); | 
|  | if (mLerpMode==LerpEulerAngles) | 
|  | currentFrame = ::lerpFrame<EulerAngles<float> >(s, lo->second, hi->second); | 
|  | else if (mLerpMode==LerpQuaternion) | 
|  | currentFrame = ::lerpFrame<Eigen::Quaternionf>(s, lo->second, hi->second); | 
|  | else | 
|  | { | 
|  | std::cerr << "Invalid rotation interpolation mode (abort)\n"; | 
|  | exit(2); | 
|  | } | 
|  | currentFrame.orientation.coeffs().normalize(); | 
|  | } | 
|  |  | 
|  | currentFrame.orientation = currentFrame.orientation.inverse(); | 
|  | currentFrame.position = - (currentFrame.orientation * currentFrame.position); | 
|  | mCamera.setFrame(currentFrame); | 
|  |  | 
|  | updateGL(); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::keyPressEvent(QKeyEvent * e) | 
|  | { | 
|  | switch(e->key()) | 
|  | { | 
|  | case Qt::Key_Up: | 
|  | mCamera.zoom(2); | 
|  | break; | 
|  | case Qt::Key_Down: | 
|  | mCamera.zoom(-2); | 
|  | break; | 
|  | // add a frame | 
|  | case Qt::Key_G: | 
|  | grabFrame(); | 
|  | break; | 
|  | // clear the time line | 
|  | case Qt::Key_C: | 
|  | m_timeline.clear(); | 
|  | break; | 
|  | // move the camera to initial pos | 
|  | case Qt::Key_R: | 
|  | resetCamera(); | 
|  | break; | 
|  | // start/stop the animation | 
|  | case Qt::Key_A: | 
|  | if (mAnimate) | 
|  | { | 
|  | stopAnimation(); | 
|  | } | 
|  | else | 
|  | { | 
|  | m_alpha = 0; | 
|  | connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); | 
|  | m_timer.start(1000/30); | 
|  | mAnimate = true; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | updateGL(); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::stopAnimation() | 
|  | { | 
|  | disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); | 
|  | m_timer.stop(); | 
|  | mAnimate = false; | 
|  | m_alpha = 0; | 
|  | } | 
|  |  | 
|  | void RenderingWidget::mousePressEvent(QMouseEvent* e) | 
|  | { | 
|  | mMouseCoords = Vector2i(e->pos().x(), e->pos().y()); | 
|  | bool fly = (mNavMode==NavFly) || (e->modifiers()&Qt::ControlModifier); | 
|  | switch(e->button()) | 
|  | { | 
|  | case Qt::LeftButton: | 
|  | if(fly) | 
|  | { | 
|  | mCurrentTrackingMode = TM_LOCAL_ROTATE; | 
|  | mTrackball.start(Trackball::Local); | 
|  | } | 
|  | else | 
|  | { | 
|  | mCurrentTrackingMode = TM_ROTATE_AROUND; | 
|  | mTrackball.start(Trackball::Around); | 
|  | } | 
|  | mTrackball.track(mMouseCoords); | 
|  | break; | 
|  | case Qt::MidButton: | 
|  | if(fly) | 
|  | mCurrentTrackingMode = TM_FLY_Z; | 
|  | else | 
|  | mCurrentTrackingMode = TM_ZOOM; | 
|  | break; | 
|  | case Qt::RightButton: | 
|  | mCurrentTrackingMode = TM_FLY_PAN; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | void RenderingWidget::mouseReleaseEvent(QMouseEvent*) | 
|  | { | 
|  | mCurrentTrackingMode = TM_NO_TRACK; | 
|  | updateGL(); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::mouseMoveEvent(QMouseEvent* e) | 
|  | { | 
|  | // tracking | 
|  | if(mCurrentTrackingMode != TM_NO_TRACK) | 
|  | { | 
|  | float dx =   float(e->x() - mMouseCoords.x()) / float(mCamera.vpWidth()); | 
|  | float dy = - float(e->y() - mMouseCoords.y()) / float(mCamera.vpHeight()); | 
|  |  | 
|  | // speedup the transformations | 
|  | if(e->modifiers() & Qt::ShiftModifier) | 
|  | { | 
|  | dx *= 10.; | 
|  | dy *= 10.; | 
|  | } | 
|  |  | 
|  | switch(mCurrentTrackingMode) | 
|  | { | 
|  | case TM_ROTATE_AROUND: | 
|  | case TM_LOCAL_ROTATE: | 
|  | if (mRotationMode==RotationStable) | 
|  | { | 
|  | // use the stable trackball implementation mapping | 
|  | // the 2D coordinates to 3D points on a sphere. | 
|  | mTrackball.track(Vector2i(e->pos().x(), e->pos().y())); | 
|  | } | 
|  | else | 
|  | { | 
|  | // standard approach mapping the x and y displacements as rotations | 
|  | // around the camera's X and Y axes. | 
|  | Quaternionf q = AngleAxisf( dx*M_PI, Vector3f::UnitY()) | 
|  | * AngleAxisf(-dy*M_PI, Vector3f::UnitX()); | 
|  | if (mCurrentTrackingMode==TM_LOCAL_ROTATE) | 
|  | mCamera.localRotate(q); | 
|  | else | 
|  | mCamera.rotateAroundTarget(q); | 
|  | } | 
|  | break; | 
|  | case TM_ZOOM : | 
|  | mCamera.zoom(dy*100); | 
|  | break; | 
|  | case TM_FLY_Z : | 
|  | mCamera.localTranslate(Vector3f(0, 0, -dy*200)); | 
|  | break; | 
|  | case TM_FLY_PAN : | 
|  | mCamera.localTranslate(Vector3f(dx*200, dy*200, 0)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | updateGL(); | 
|  | } | 
|  |  | 
|  | mMouseCoords = Vector2i(e->pos().x(), e->pos().y()); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::paintGL() | 
|  | { | 
|  | glEnable(GL_DEPTH_TEST); | 
|  | glDisable(GL_CULL_FACE); | 
|  | glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); | 
|  | glDisable(GL_COLOR_MATERIAL); | 
|  | glDisable(GL_BLEND); | 
|  | glDisable(GL_ALPHA_TEST); | 
|  | glDisable(GL_TEXTURE_1D); | 
|  | glDisable(GL_TEXTURE_2D); | 
|  | glDisable(GL_TEXTURE_3D); | 
|  |  | 
|  | // Clear buffers | 
|  | glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); | 
|  |  | 
|  | mCamera.activateGL(); | 
|  |  | 
|  | drawScene(); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::initializeGL() | 
|  | { | 
|  | glClearColor(1., 1., 1., 0.); | 
|  | glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1); | 
|  | glDepthMask(GL_TRUE); | 
|  | glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); | 
|  |  | 
|  | mCamera.setPosition(Vector3f(-200, -200, -200)); | 
|  | mCamera.setTarget(Vector3f(0, 0, 0)); | 
|  | mInitFrame.orientation = mCamera.orientation().inverse(); | 
|  | mInitFrame.position = mCamera.viewMatrix().translation(); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::resizeGL(int width, int height) | 
|  | { | 
|  | mCamera.setViewport(width,height); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::setNavMode(int m) | 
|  | { | 
|  | mNavMode = NavMode(m); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::setLerpMode(int m) | 
|  | { | 
|  | mLerpMode = LerpMode(m); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::setRotationMode(int m) | 
|  | { | 
|  | mRotationMode = RotationMode(m); | 
|  | } | 
|  |  | 
|  | void RenderingWidget::resetCamera() | 
|  | { | 
|  | if (mAnimate) | 
|  | stopAnimation(); | 
|  | m_timeline.clear(); | 
|  | Frame aux0 = mCamera.frame(); | 
|  | aux0.orientation = aux0.orientation.inverse(); | 
|  | aux0.position = mCamera.viewMatrix().translation(); | 
|  | m_timeline[0] = aux0; | 
|  |  | 
|  | Vector3f currentTarget = mCamera.target(); | 
|  | mCamera.setTarget(Vector3f::Zero()); | 
|  |  | 
|  | // compute the rotation duration to move the camera to the target | 
|  | Frame aux1 = mCamera.frame(); | 
|  | aux1.orientation = aux1.orientation.inverse(); | 
|  | aux1.position = mCamera.viewMatrix().translation(); | 
|  | float duration = aux0.orientation.angularDistance(aux1.orientation) * 0.9; | 
|  | if (duration<0.1) duration = 0.1; | 
|  |  | 
|  | // put the camera at that time step: | 
|  | aux1 = aux0.lerp(duration/2,mInitFrame); | 
|  | // and make it look at the target again | 
|  | aux1.orientation = aux1.orientation.inverse(); | 
|  | aux1.position = - (aux1.orientation * aux1.position); | 
|  | mCamera.setFrame(aux1); | 
|  | mCamera.setTarget(Vector3f::Zero()); | 
|  |  | 
|  | // add this camera keyframe | 
|  | aux1.orientation = aux1.orientation.inverse(); | 
|  | aux1.position = mCamera.viewMatrix().translation(); | 
|  | m_timeline[duration] = aux1; | 
|  |  | 
|  | m_timeline[2] = mInitFrame; | 
|  | m_alpha = 0; | 
|  | animate(); | 
|  | connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); | 
|  | m_timer.start(1000/30); | 
|  | mAnimate = true; | 
|  | } | 
|  |  | 
|  | QWidget* RenderingWidget::createNavigationControlWidget() | 
|  | { | 
|  | QWidget* panel = new QWidget(); | 
|  | QVBoxLayout* layout = new QVBoxLayout(); | 
|  |  | 
|  | { | 
|  | QPushButton* but = new QPushButton("reset"); | 
|  | but->setToolTip("move the camera to initial position (with animation)"); | 
|  | layout->addWidget(but); | 
|  | connect(but, SIGNAL(clicked()), this, SLOT(resetCamera())); | 
|  | } | 
|  | { | 
|  | // navigation mode | 
|  | QGroupBox* box = new QGroupBox("navigation mode"); | 
|  | QVBoxLayout* boxLayout = new QVBoxLayout; | 
|  | QButtonGroup* group = new QButtonGroup(panel); | 
|  | QRadioButton* but; | 
|  | but = new QRadioButton("turn around"); | 
|  | but->setToolTip("look around an object"); | 
|  | group->addButton(but, NavTurnAround); | 
|  | boxLayout->addWidget(but); | 
|  | but = new QRadioButton("fly"); | 
|  | but->setToolTip("free navigation like a spaceship\n(this mode can also be enabled pressing the \"shift\" key)"); | 
|  | group->addButton(but, NavFly); | 
|  | boxLayout->addWidget(but); | 
|  | group->button(mNavMode)->setChecked(true); | 
|  | connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int))); | 
|  | box->setLayout(boxLayout); | 
|  | layout->addWidget(box); | 
|  | } | 
|  | { | 
|  | // track ball, rotation mode | 
|  | QGroupBox* box = new QGroupBox("rotation mode"); | 
|  | QVBoxLayout* boxLayout = new QVBoxLayout; | 
|  | QButtonGroup* group = new QButtonGroup(panel); | 
|  | QRadioButton* but; | 
|  | but = new QRadioButton("stable trackball"); | 
|  | group->addButton(but, RotationStable); | 
|  | boxLayout->addWidget(but); | 
|  | but->setToolTip("use the stable trackball implementation mapping\nthe 2D coordinates to 3D points on a sphere"); | 
|  | but = new QRadioButton("standard rotation"); | 
|  | group->addButton(but, RotationStandard); | 
|  | boxLayout->addWidget(but); | 
|  | but->setToolTip("standard approach mapping the x and y displacements\nas rotations around the camera's X and Y axes"); | 
|  | group->button(mRotationMode)->setChecked(true); | 
|  | connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setRotationMode(int))); | 
|  | box->setLayout(boxLayout); | 
|  | layout->addWidget(box); | 
|  | } | 
|  | { | 
|  | // interpolation mode | 
|  | QGroupBox* box = new QGroupBox("spherical interpolation"); | 
|  | QVBoxLayout* boxLayout = new QVBoxLayout; | 
|  | QButtonGroup* group = new QButtonGroup(panel); | 
|  | QRadioButton* but; | 
|  | but = new QRadioButton("quaternion slerp"); | 
|  | group->addButton(but, LerpQuaternion); | 
|  | boxLayout->addWidget(but); | 
|  | but->setToolTip("use quaternion spherical interpolation\nto interpolate orientations"); | 
|  | but = new QRadioButton("euler angles"); | 
|  | group->addButton(but, LerpEulerAngles); | 
|  | boxLayout->addWidget(but); | 
|  | but->setToolTip("use Euler angles to interpolate orientations"); | 
|  | group->button(mNavMode)->setChecked(true); | 
|  | connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setLerpMode(int))); | 
|  | box->setLayout(boxLayout); | 
|  | layout->addWidget(box); | 
|  | } | 
|  | layout->addItem(new QSpacerItem(0,0,QSizePolicy::Minimum,QSizePolicy::Expanding)); | 
|  | panel->setLayout(layout); | 
|  | return panel; | 
|  | } | 
|  |  | 
|  | QuaternionDemo::QuaternionDemo() | 
|  | { | 
|  | mRenderingWidget = new RenderingWidget(); | 
|  | setCentralWidget(mRenderingWidget); | 
|  |  | 
|  | QDockWidget* panel = new QDockWidget("navigation", this); | 
|  | panel->setAllowedAreas((QFlags<Qt::DockWidgetArea>)(Qt::RightDockWidgetArea | Qt::LeftDockWidgetArea)); | 
|  | addDockWidget(Qt::RightDockWidgetArea, panel); | 
|  | panel->setWidget(mRenderingWidget->createNavigationControlWidget()); | 
|  | } | 
|  |  | 
|  | int main(int argc, char *argv[]) | 
|  | { | 
|  | std::cout << "Navigation:\n"; | 
|  | std::cout << "  left button:           rotate around the target\n"; | 
|  | std::cout << "  middle button:         zoom\n"; | 
|  | std::cout << "  left button + ctrl     quake rotate (rotate around camera position)\n"; | 
|  | std::cout << "  middle button + ctrl   walk (progress along camera's z direction)\n"; | 
|  | std::cout << "  left button:           pan (translate in the XY camera's plane)\n\n"; | 
|  | std::cout << "R : move the camera to initial position\n"; | 
|  | std::cout << "A : start/stop animation\n"; | 
|  | std::cout << "C : clear the animation\n"; | 
|  | std::cout << "G : add a key frame\n"; | 
|  |  | 
|  | QApplication app(argc, argv); | 
|  | QuaternionDemo demo; | 
|  | demo.resize(600,500); | 
|  | demo.show(); | 
|  | return app.exec(); | 
|  | } | 
|  |  | 
|  | #include "quaternion_demo.moc" | 
|  |  |