|  | *> \brief \b ZLARFG | 
|  | * | 
|  | *  =========== DOCUMENTATION =========== | 
|  | * | 
|  | * Online html documentation available at | 
|  | *            http://www.netlib.org/lapack/explore-html/ | 
|  | * | 
|  | *> \htmlonly | 
|  | *> Download ZLARFG + dependencies | 
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfg.f"> | 
|  | *> [TGZ]</a> | 
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfg.f"> | 
|  | *> [ZIP]</a> | 
|  | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfg.f"> | 
|  | *> [TXT]</a> | 
|  | *> \endhtmlonly | 
|  | * | 
|  | *  Definition: | 
|  | *  =========== | 
|  | * | 
|  | *       SUBROUTINE ZLARFG( N, ALPHA, X, INCX, TAU ) | 
|  | * | 
|  | *       .. Scalar Arguments .. | 
|  | *       INTEGER            INCX, N | 
|  | *       COMPLEX*16         ALPHA, TAU | 
|  | *       .. | 
|  | *       .. Array Arguments .. | 
|  | *       COMPLEX*16         X( * ) | 
|  | *       .. | 
|  | * | 
|  | * | 
|  | *> \par Purpose: | 
|  | *  ============= | 
|  | *> | 
|  | *> \verbatim | 
|  | *> | 
|  | *> ZLARFG generates a complex elementary reflector H of order n, such | 
|  | *> that | 
|  | *> | 
|  | *>       H**H * ( alpha ) = ( beta ),   H**H * H = I. | 
|  | *>              (   x   )   (   0  ) | 
|  | *> | 
|  | *> where alpha and beta are scalars, with beta real, and x is an | 
|  | *> (n-1)-element complex vector. H is represented in the form | 
|  | *> | 
|  | *>       H = I - tau * ( 1 ) * ( 1 v**H ) , | 
|  | *>                     ( v ) | 
|  | *> | 
|  | *> where tau is a complex scalar and v is a complex (n-1)-element | 
|  | *> vector. Note that H is not hermitian. | 
|  | *> | 
|  | *> If the elements of x are all zero and alpha is real, then tau = 0 | 
|  | *> and H is taken to be the unit matrix. | 
|  | *> | 
|  | *> Otherwise  1 <= real(tau) <= 2  and  abs(tau-1) <= 1 . | 
|  | *> \endverbatim | 
|  | * | 
|  | *  Arguments: | 
|  | *  ========== | 
|  | * | 
|  | *> \param[in] N | 
|  | *> \verbatim | 
|  | *>          N is INTEGER | 
|  | *>          The order of the elementary reflector. | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[in,out] ALPHA | 
|  | *> \verbatim | 
|  | *>          ALPHA is COMPLEX*16 | 
|  | *>          On entry, the value alpha. | 
|  | *>          On exit, it is overwritten with the value beta. | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[in,out] X | 
|  | *> \verbatim | 
|  | *>          X is COMPLEX*16 array, dimension | 
|  | *>                         (1+(N-2)*abs(INCX)) | 
|  | *>          On entry, the vector x. | 
|  | *>          On exit, it is overwritten with the vector v. | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[in] INCX | 
|  | *> \verbatim | 
|  | *>          INCX is INTEGER | 
|  | *>          The increment between elements of X. INCX > 0. | 
|  | *> \endverbatim | 
|  | *> | 
|  | *> \param[out] TAU | 
|  | *> \verbatim | 
|  | *>          TAU is COMPLEX*16 | 
|  | *>          The value tau. | 
|  | *> \endverbatim | 
|  | * | 
|  | *  Authors: | 
|  | *  ======== | 
|  | * | 
|  | *> \author Univ. of Tennessee | 
|  | *> \author Univ. of California Berkeley | 
|  | *> \author Univ. of Colorado Denver | 
|  | *> \author NAG Ltd. | 
|  | * | 
|  | *> \date November 2011 | 
|  | * | 
|  | *> \ingroup complex16OTHERauxiliary | 
|  | * | 
|  | *  ===================================================================== | 
|  | SUBROUTINE ZLARFG( N, ALPHA, X, INCX, TAU ) | 
|  | * | 
|  | *  -- LAPACK auxiliary routine (version 3.4.0) -- | 
|  | *  -- LAPACK is a software package provided by Univ. of Tennessee,    -- | 
|  | *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | 
|  | *     November 2011 | 
|  | * | 
|  | *     .. Scalar Arguments .. | 
|  | INTEGER            INCX, N | 
|  | COMPLEX*16         ALPHA, TAU | 
|  | *     .. | 
|  | *     .. Array Arguments .. | 
|  | COMPLEX*16         X( * ) | 
|  | *     .. | 
|  | * | 
|  | *  ===================================================================== | 
|  | * | 
|  | *     .. Parameters .. | 
|  | DOUBLE PRECISION   ONE, ZERO | 
|  | PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) | 
|  | *     .. | 
|  | *     .. Local Scalars .. | 
|  | INTEGER            J, KNT | 
|  | DOUBLE PRECISION   ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM | 
|  | *     .. | 
|  | *     .. External Functions .. | 
|  | DOUBLE PRECISION   DLAMCH, DLAPY3, DZNRM2 | 
|  | COMPLEX*16         ZLADIV | 
|  | EXTERNAL           DLAMCH, DLAPY3, DZNRM2, ZLADIV | 
|  | *     .. | 
|  | *     .. Intrinsic Functions .. | 
|  | INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, SIGN | 
|  | *     .. | 
|  | *     .. External Subroutines .. | 
|  | EXTERNAL           ZDSCAL, ZSCAL | 
|  | *     .. | 
|  | *     .. Executable Statements .. | 
|  | * | 
|  | IF( N.LE.0 ) THEN | 
|  | TAU = ZERO | 
|  | RETURN | 
|  | END IF | 
|  | * | 
|  | XNORM = DZNRM2( N-1, X, INCX ) | 
|  | ALPHR = DBLE( ALPHA ) | 
|  | ALPHI = DIMAG( ALPHA ) | 
|  | * | 
|  | IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN | 
|  | * | 
|  | *        H  =  I | 
|  | * | 
|  | TAU = ZERO | 
|  | ELSE | 
|  | * | 
|  | *        general case | 
|  | * | 
|  | BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) | 
|  | SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' ) | 
|  | RSAFMN = ONE / SAFMIN | 
|  | * | 
|  | KNT = 0 | 
|  | IF( ABS( BETA ).LT.SAFMIN ) THEN | 
|  | * | 
|  | *           XNORM, BETA may be inaccurate; scale X and recompute them | 
|  | * | 
|  | 10       CONTINUE | 
|  | KNT = KNT + 1 | 
|  | CALL ZDSCAL( N-1, RSAFMN, X, INCX ) | 
|  | BETA = BETA*RSAFMN | 
|  | ALPHI = ALPHI*RSAFMN | 
|  | ALPHR = ALPHR*RSAFMN | 
|  | IF( ABS( BETA ).LT.SAFMIN ) | 
|  | $         GO TO 10 | 
|  | * | 
|  | *           New BETA is at most 1, at least SAFMIN | 
|  | * | 
|  | XNORM = DZNRM2( N-1, X, INCX ) | 
|  | ALPHA = DCMPLX( ALPHR, ALPHI ) | 
|  | BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) | 
|  | END IF | 
|  | TAU = DCMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA ) | 
|  | ALPHA = ZLADIV( DCMPLX( ONE ), ALPHA-BETA ) | 
|  | CALL ZSCAL( N-1, ALPHA, X, INCX ) | 
|  | * | 
|  | *        If ALPHA is subnormal, it may lose relative accuracy | 
|  | * | 
|  | DO 20 J = 1, KNT | 
|  | BETA = BETA*SAFMIN | 
|  | 20      CONTINUE | 
|  | ALPHA = BETA | 
|  | END IF | 
|  | * | 
|  | RETURN | 
|  | * | 
|  | *     End of ZLARFG | 
|  | * | 
|  | END |