|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #define EIGEN_NO_STATIC_ASSERT | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<bool IsInteger> struct adjoint_specific; | 
|  |  | 
|  | template<> struct adjoint_specific<true> { | 
|  | template<typename Vec, typename Mat, typename Scalar> | 
|  | static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { | 
|  | VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0)); | 
|  | VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), 0)); | 
|  |  | 
|  | // check compatibility of dot and adjoint | 
|  | VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> struct adjoint_specific<false> { | 
|  | template<typename Vec, typename Mat, typename Scalar> | 
|  | static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | using std::abs; | 
|  |  | 
|  | RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm()); | 
|  | VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),     numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref)); | 
|  | VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2),       s1*v3.dot(v1)+s2*v3.dot(v2), ref)); | 
|  |  | 
|  | VERIFY_IS_APPROX(v1.squaredNorm(),                v1.norm() * v1.norm()); | 
|  | // check normalized() and normalize() | 
|  | VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized()); | 
|  | v3 = v1; | 
|  | v3.normalize(); | 
|  | VERIFY_IS_APPROX(v1, v1.norm() * v3); | 
|  | VERIFY_IS_APPROX(v3, v1.normalized()); | 
|  | VERIFY_IS_APPROX(v3.norm(), RealScalar(1)); | 
|  |  | 
|  | // check null inputs | 
|  | VERIFY_IS_APPROX((v1*0).normalized(), (v1*0)); | 
|  | #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE) | 
|  | RealScalar very_small = (std::numeric_limits<RealScalar>::min)(); | 
|  | VERIFY( (v1*very_small).norm() == 0 ); | 
|  | VERIFY_IS_APPROX((v1*very_small).normalized(), (v1*very_small)); | 
|  | v3 = v1*very_small; | 
|  | v3.normalize(); | 
|  | VERIFY_IS_APPROX(v3, (v1*very_small)); | 
|  | #endif | 
|  |  | 
|  | // check compatibility of dot and adjoint | 
|  | ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm())); | 
|  | VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>())); | 
|  |  | 
|  | // check that Random().normalized() works: tricky as the random xpr must be evaluated by | 
|  | // normalized() in order to produce a consistent result. | 
|  | VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> void adjoint(const MatrixType& m) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Transpose.h Conjugate.h Dot.h | 
|  | */ | 
|  | using std::abs; | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
|  | const Index PacketSize = internal::packet_traits<Scalar>::size; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | square = SquareMatrixType::Random(rows, rows); | 
|  | VectorType v1 = VectorType::Random(rows), | 
|  | v2 = VectorType::Random(rows), | 
|  | v3 = VectorType::Random(rows), | 
|  | vzero = VectorType::Zero(rows); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(), | 
|  | s2 = internal::random<Scalar>(); | 
|  |  | 
|  | // check basic compatibility of adjoint, transpose, conjugate | 
|  | VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(),    m1); | 
|  | VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(),    m1); | 
|  |  | 
|  | // check multiplicative behavior | 
|  | VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(),           m2.adjoint() * m1); | 
|  | VERIFY_IS_APPROX((s1 * m1).adjoint(),                     numext::conj(s1) * m1.adjoint()); | 
|  |  | 
|  | // check basic properties of dot, squaredNorm | 
|  | VERIFY_IS_APPROX(numext::conj(v1.dot(v2)),               v2.dot(v1)); | 
|  | VERIFY_IS_APPROX(numext::real(v1.dot(v1)),               v1.squaredNorm()); | 
|  |  | 
|  | adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2); | 
|  |  | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)),  static_cast<RealScalar>(1)); | 
|  |  | 
|  | // like in testBasicStuff, test operator() to check const-qualification | 
|  | Index r = internal::random<Index>(0, rows-1), | 
|  | c = internal::random<Index>(0, cols-1); | 
|  | VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c))); | 
|  | VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c))); | 
|  |  | 
|  | // check inplace transpose | 
|  | m3 = m1; | 
|  | m3.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m3,m1.transpose()); | 
|  | m3.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m3,m1); | 
|  |  | 
|  | if(PacketSize<m3.rows() && PacketSize<m3.cols()) | 
|  | { | 
|  | m3 = m1; | 
|  | Index i = internal::random<Index>(0,m3.rows()-PacketSize); | 
|  | Index j = internal::random<Index>(0,m3.cols()-PacketSize); | 
|  | m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace(); | 
|  | VERIFY_IS_APPROX( (m3.template block<PacketSize,PacketSize>(i,j)), (m1.template block<PacketSize,PacketSize>(i,j).transpose()) ); | 
|  | m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m3,m1); | 
|  | } | 
|  |  | 
|  | // check inplace adjoint | 
|  | m3 = m1; | 
|  | m3.adjointInPlace(); | 
|  | VERIFY_IS_APPROX(m3,m1.adjoint()); | 
|  | m3.transposeInPlace(); | 
|  | VERIFY_IS_APPROX(m3,m1.conjugate()); | 
|  |  | 
|  | // check mixed dot product | 
|  | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; | 
|  | RealVectorType rv1 = RealVectorType::Random(rows); | 
|  | VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1)); | 
|  | VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1)); | 
|  | } | 
|  |  | 
|  | void test_adjoint() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( adjoint(Matrix3d()) ); | 
|  | CALL_SUBTEST_3( adjoint(Matrix4f()) ); | 
|  |  | 
|  | CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | 
|  | CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  |  | 
|  | // Complement for 128 bits vectorization: | 
|  | CALL_SUBTEST_8( adjoint(Matrix2d()) ); | 
|  | CALL_SUBTEST_9( adjoint(Matrix<int,4,4>()) ); | 
|  |  | 
|  | // 256 bits vectorization: | 
|  | CALL_SUBTEST_10( adjoint(Matrix<float,8,8>()) ); | 
|  | CALL_SUBTEST_11( adjoint(Matrix<double,4,4>()) ); | 
|  | CALL_SUBTEST_12( adjoint(Matrix<int,8,8>()) ); | 
|  | } | 
|  | // test a large static matrix only once | 
|  | CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_13 | 
|  | { | 
|  | MatrixXcf a(10,10), b(10,10); | 
|  | VERIFY_RAISES_ASSERT(a = a.transpose()); | 
|  | VERIFY_RAISES_ASSERT(a = a.transpose() + b); | 
|  | VERIFY_RAISES_ASSERT(a = b + a.transpose()); | 
|  | VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); | 
|  | VERIFY_RAISES_ASSERT(a = a.adjoint()); | 
|  | VERIFY_RAISES_ASSERT(a = a.adjoint() + b); | 
|  | VERIFY_RAISES_ASSERT(a = b + a.adjoint()); | 
|  |  | 
|  | // no assertion should be triggered for these cases: | 
|  | a.transpose() = a.transpose(); | 
|  | a.transpose() += a.transpose(); | 
|  | a.transpose() += a.transpose() + b; | 
|  | a.transpose() = a.adjoint(); | 
|  | a.transpose() += a.adjoint(); | 
|  | a.transpose() += a.adjoint() + b; | 
|  |  | 
|  | // regression tests for check_for_aliasing | 
|  | MatrixXd c(10,10); | 
|  | c = 1.0 * MatrixXd::Ones(10,10) + c; | 
|  | c = MatrixXd::Ones(10,10) * 1.0 + c; | 
|  | c = c + MatrixXd::Ones(10,10) .cwiseProduct( MatrixXd::Zero(10,10) ); | 
|  | c = MatrixXd::Ones(10,10) * MatrixXd::Zero(10,10); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  |