|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | 
|  | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include <iostream> | 
|  | #include <fstream> | 
|  | #include <iomanip> | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/LevenbergMarquardt> | 
|  | using namespace std; | 
|  | using namespace Eigen; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct DenseLM : DenseFunctor<Scalar> | 
|  | { | 
|  | typedef DenseFunctor<Scalar> Base; | 
|  | typedef typename Base::JacobianType JacobianType; | 
|  | typedef Matrix<Scalar,Dynamic,1> VectorType; | 
|  |  | 
|  | DenseLM(int n, int m) : DenseFunctor<Scalar>(n,m) | 
|  | { } | 
|  |  | 
|  | VectorType model(const VectorType& uv, VectorType& x) | 
|  | { | 
|  | VectorType y; // Should change to use expression template | 
|  | int m = Base::values(); | 
|  | int n = Base::inputs(); | 
|  | eigen_assert(uv.size()%2 == 0); | 
|  | eigen_assert(uv.size() == n); | 
|  | eigen_assert(x.size() == m); | 
|  | y.setZero(m); | 
|  | int half = n/2; | 
|  | VectorBlock<const VectorType> u(uv, 0, half); | 
|  | VectorBlock<const VectorType> v(uv, half, half); | 
|  | for (int j = 0; j < m; j++) | 
|  | { | 
|  | for (int i = 0; i < half; i++) | 
|  | y(j) += u(i)*std::exp(-(x(j)-i)*(x(j)-i)/(v(i)*v(i))); | 
|  | } | 
|  | return y; | 
|  |  | 
|  | } | 
|  | void initPoints(VectorType& uv_ref, VectorType& x) | 
|  | { | 
|  | m_x = x; | 
|  | m_y = this->model(uv_ref, x); | 
|  | } | 
|  |  | 
|  | int operator()(const VectorType& uv, VectorType& fvec) | 
|  | { | 
|  |  | 
|  | int m = Base::values(); | 
|  | int n = Base::inputs(); | 
|  | eigen_assert(uv.size()%2 == 0); | 
|  | eigen_assert(uv.size() == n); | 
|  | eigen_assert(fvec.size() == m); | 
|  | int half = n/2; | 
|  | VectorBlock<const VectorType> u(uv, 0, half); | 
|  | VectorBlock<const VectorType> v(uv, half, half); | 
|  | for (int j = 0; j < m; j++) | 
|  | { | 
|  | fvec(j) = m_y(j); | 
|  | for (int i = 0; i < half; i++) | 
|  | { | 
|  | fvec(j) -= u(i) *std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i))); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | int df(const VectorType& uv, JacobianType& fjac) | 
|  | { | 
|  | int m = Base::values(); | 
|  | int n = Base::inputs(); | 
|  | eigen_assert(n == uv.size()); | 
|  | eigen_assert(fjac.rows() == m); | 
|  | eigen_assert(fjac.cols() == n); | 
|  | int half = n/2; | 
|  | VectorBlock<const VectorType> u(uv, 0, half); | 
|  | VectorBlock<const VectorType> v(uv, half, half); | 
|  | for (int j = 0; j < m; j++) | 
|  | { | 
|  | for (int i = 0; i < half; i++) | 
|  | { | 
|  | fjac.coeffRef(j,i) = -std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i))); | 
|  | fjac.coeffRef(j,i+half) = -2.*u(i)*(m_x(j)-i)*(m_x(j)-i)/(std::pow(v(i),3)) * std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i))); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | VectorType m_x, m_y; //Data Points | 
|  | }; | 
|  |  | 
|  | template<typename FunctorType, typename VectorType> | 
|  | int test_minimizeLM(FunctorType& functor, VectorType& uv) | 
|  | { | 
|  | LevenbergMarquardt<FunctorType> lm(functor); | 
|  | LevenbergMarquardtSpace::Status info; | 
|  |  | 
|  | info = lm.minimize(uv); | 
|  |  | 
|  | VERIFY_IS_EQUAL(info, 1); | 
|  | //FIXME Check other parameters | 
|  | return info; | 
|  | } | 
|  |  | 
|  | template<typename FunctorType, typename VectorType> | 
|  | int test_lmder(FunctorType& functor, VectorType& uv) | 
|  | { | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  | LevenbergMarquardtSpace::Status info; | 
|  | LevenbergMarquardt<FunctorType> lm(functor); | 
|  | info = lm.lmder1(uv); | 
|  |  | 
|  | VERIFY_IS_EQUAL(info, 1); | 
|  | //FIXME Check other parameters | 
|  | return info; | 
|  | } | 
|  |  | 
|  | template<typename FunctorType, typename VectorType> | 
|  | int test_minimizeSteps(FunctorType& functor, VectorType& uv) | 
|  | { | 
|  | LevenbergMarquardtSpace::Status info; | 
|  | LevenbergMarquardt<FunctorType> lm(functor); | 
|  | info = lm.minimizeInit(uv); | 
|  | if (info==LevenbergMarquardtSpace::ImproperInputParameters) | 
|  | return info; | 
|  | do | 
|  | { | 
|  | info = lm.minimizeOneStep(uv); | 
|  | } while (info==LevenbergMarquardtSpace::Running); | 
|  |  | 
|  | VERIFY_IS_EQUAL(info, 1); | 
|  | //FIXME Check other parameters | 
|  | return info; | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | void test_denseLM_T() | 
|  | { | 
|  | typedef Matrix<T,Dynamic,1> VectorType; | 
|  |  | 
|  | int inputs = 10; | 
|  | int values = 1000; | 
|  | DenseLM<T> dense_gaussian(inputs, values); | 
|  | VectorType uv(inputs),uv_ref(inputs); | 
|  | VectorType x(values); | 
|  |  | 
|  | // Generate the reference solution | 
|  | uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3; | 
|  |  | 
|  | //Generate the reference data points | 
|  | x.setRandom(); | 
|  | x = 10*x; | 
|  | x.array() += 10; | 
|  | dense_gaussian.initPoints(uv_ref, x); | 
|  |  | 
|  | // Generate the initial parameters | 
|  | VectorBlock<VectorType> u(uv, 0, inputs/2); | 
|  | VectorBlock<VectorType> v(uv, inputs/2, inputs/2); | 
|  |  | 
|  | // Solve the optimization problem | 
|  |  | 
|  | //Solve in one go | 
|  | u.setOnes(); v.setOnes(); | 
|  | test_minimizeLM(dense_gaussian, uv); | 
|  |  | 
|  | //Solve until the machine precision | 
|  | u.setOnes(); v.setOnes(); | 
|  | test_lmder(dense_gaussian, uv); | 
|  |  | 
|  | // Solve step by step | 
|  | v.setOnes(); u.setOnes(); | 
|  | test_minimizeSteps(dense_gaussian, uv); | 
|  |  | 
|  | } | 
|  |  | 
|  | void test_denseLM() | 
|  | { | 
|  | CALL_SUBTEST_2(test_denseLM_T<double>()); | 
|  |  | 
|  | // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>()); | 
|  | } |