|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | /* this test covers the following files: | 
|  | Geometry/OrthoMethods.h | 
|  | */ | 
|  |  | 
|  | template<typename Scalar> void orthomethods_3() | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar,3,3> Matrix3; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  |  | 
|  | typedef Matrix<Scalar,4,1> Vector4; | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), | 
|  | v1 = Vector3::Random(), | 
|  | v2 = Vector3::Random(); | 
|  |  | 
|  | // cross product | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1)); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v1.dot(v1.cross(v2)), Scalar(1)); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v2), Scalar(1)); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v2.dot(v1.cross(v2)), Scalar(1)); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(Vector3::Random()).dot(v1), Scalar(1)); | 
|  | Matrix3 mat3; | 
|  | mat3 << v0.normalized(), | 
|  | (v0.cross(v1)).normalized(), | 
|  | (v0.cross(v1).cross(v0)).normalized(); | 
|  | VERIFY(mat3.isUnitary()); | 
|  |  | 
|  | mat3.setRandom(); | 
|  | VERIFY_IS_APPROX(v0.cross(mat3*v1), -(mat3*v1).cross(v0)); | 
|  | VERIFY_IS_APPROX(v0.cross(mat3.lazyProduct(v1)), -(mat3.lazyProduct(v1)).cross(v0)); | 
|  |  | 
|  | // colwise/rowwise cross product | 
|  | mat3.setRandom(); | 
|  | Vector3 vec3 = Vector3::Random(); | 
|  | Matrix3 mcross; | 
|  | int i = internal::random<int>(0,2); | 
|  | mcross = mat3.colwise().cross(vec3); | 
|  | VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); | 
|  |  | 
|  | VERIFY_IS_MUCH_SMALLER_THAN((mat3.adjoint() * mat3.colwise().cross(vec3)).diagonal().cwiseAbs().sum(), Scalar(1)); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN((mat3.adjoint() * mat3.colwise().cross(Vector3::Random())).diagonal().cwiseAbs().sum(), Scalar(1)); | 
|  |  | 
|  | VERIFY_IS_MUCH_SMALLER_THAN((vec3.adjoint() * mat3.colwise().cross(vec3)).cwiseAbs().sum(), Scalar(1)); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN((vec3.adjoint() * Matrix3::Random().colwise().cross(vec3)).cwiseAbs().sum(), Scalar(1)); | 
|  |  | 
|  | mcross = mat3.rowwise().cross(vec3); | 
|  | VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); | 
|  |  | 
|  | // cross3 | 
|  | Vector4 v40 = Vector4::Random(), | 
|  | v41 = Vector4::Random(), | 
|  | v42 = Vector4::Random(); | 
|  | v40.w() = v41.w() = v42.w() = 0; | 
|  | v42.template head<3>() = v40.template head<3>().cross(v41.template head<3>()); | 
|  | VERIFY_IS_APPROX(v40.cross3(v41), v42); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v40.cross3(Vector4::Random()).dot(v40), Scalar(1)); | 
|  |  | 
|  | // check mixed product | 
|  | typedef Matrix<RealScalar, 3, 1> RealVector3; | 
|  | RealVector3 rv1 = RealVector3::Random(); | 
|  | VERIFY_IS_APPROX(v1.cross(rv1.template cast<Scalar>()), v1.cross(rv1)); | 
|  | VERIFY_IS_APPROX(rv1.template cast<Scalar>().cross(v1), rv1.cross(v1)); | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Size> void orthomethods(int size=Size) | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar,Size,1> VectorType; | 
|  | typedef Matrix<Scalar,3,Size> Matrix3N; | 
|  | typedef Matrix<Scalar,Size,3> MatrixN3; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  |  | 
|  | VectorType v0 = VectorType::Random(size); | 
|  |  | 
|  | // unitOrthogonal | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); | 
|  | VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1)); | 
|  |  | 
|  | if (size>=3) | 
|  | { | 
|  | v0.template head<2>().setZero(); | 
|  | v0.tail(size-2).setRandom(); | 
|  |  | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); | 
|  | VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1)); | 
|  | } | 
|  |  | 
|  | // colwise/rowwise cross product | 
|  | Vector3 vec3 = Vector3::Random(); | 
|  | int i = internal::random<int>(0,size-1); | 
|  |  | 
|  | Matrix3N mat3N(3,size), mcross3N(3,size); | 
|  | mat3N.setRandom(); | 
|  | mcross3N = mat3N.colwise().cross(vec3); | 
|  | VERIFY_IS_APPROX(mcross3N.col(i), mat3N.col(i).cross(vec3)); | 
|  |  | 
|  | MatrixN3 matN3(size,3), mcrossN3(size,3); | 
|  | matN3.setRandom(); | 
|  | mcrossN3 = matN3.rowwise().cross(vec3); | 
|  | VERIFY_IS_APPROX(mcrossN3.row(i), matN3.row(i).cross(vec3)); | 
|  | } | 
|  |  | 
|  | void test_geo_orthomethods() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( orthomethods_3<float>() ); | 
|  | CALL_SUBTEST_2( orthomethods_3<double>() ); | 
|  | CALL_SUBTEST_4( orthomethods_3<std::complex<double> >() ); | 
|  | CALL_SUBTEST_1( (orthomethods<float,2>()) ); | 
|  | CALL_SUBTEST_2( (orthomethods<double,2>()) ); | 
|  | CALL_SUBTEST_1( (orthomethods<float,3>()) ); | 
|  | CALL_SUBTEST_2( (orthomethods<double,3>()) ); | 
|  | CALL_SUBTEST_3( (orthomethods<float,7>()) ); | 
|  | CALL_SUBTEST_4( (orthomethods<std::complex<double>,8>()) ); | 
|  | CALL_SUBTEST_5( (orthomethods<float,Dynamic>(36)) ); | 
|  | CALL_SUBTEST_6( (orthomethods<double,Dynamic>(35)) ); | 
|  | } | 
|  | } |