|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <limits> | 
|  | #include <Eigen/Eigenvalues> | 
|  |  | 
|  | template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  |  | 
|  | const Index size = T.cols(); | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | // Check T is lower Hessenberg | 
|  | for(int row = 2; row < size; ++row) { | 
|  | for(int col = 0; col < row - 1; ++col) { | 
|  | VERIFY(T(row,col) == Scalar(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that any non-zero on the subdiagonal is followed by a zero and is | 
|  | // part of a 2x2 diagonal block with imaginary eigenvalues. | 
|  | for(int row = 1; row < size; ++row) { | 
|  | if (T(row,row-1) != Scalar(0)) { | 
|  | VERIFY(row == size-1 || T(row+1,row) == 0); | 
|  | Scalar tr = T(row-1,row-1) + T(row,row); | 
|  | Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1); | 
|  | VERIFY(4 * det > tr * tr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime) | 
|  | { | 
|  | // Test basic functionality: T is quasi-triangular and A = U T U* | 
|  | for(int counter = 0; counter < g_repeat; ++counter) { | 
|  | MatrixType A = MatrixType::Random(size, size); | 
|  | RealSchur<MatrixType> schurOfA(A); | 
|  | VERIFY_IS_EQUAL(schurOfA.info(), Success); | 
|  | MatrixType U = schurOfA.matrixU(); | 
|  | MatrixType T = schurOfA.matrixT(); | 
|  | verifyIsQuasiTriangular(T); | 
|  | VERIFY_IS_APPROX(A, U * T * U.transpose()); | 
|  | } | 
|  |  | 
|  | // Test asserts when not initialized | 
|  | RealSchur<MatrixType> rsUninitialized; | 
|  | VERIFY_RAISES_ASSERT(rsUninitialized.matrixT()); | 
|  | VERIFY_RAISES_ASSERT(rsUninitialized.matrixU()); | 
|  | VERIFY_RAISES_ASSERT(rsUninitialized.info()); | 
|  |  | 
|  | // Test whether compute() and constructor returns same result | 
|  | MatrixType A = MatrixType::Random(size, size); | 
|  | RealSchur<MatrixType> rs1; | 
|  | rs1.compute(A); | 
|  | RealSchur<MatrixType> rs2(A); | 
|  | VERIFY_IS_EQUAL(rs1.info(), Success); | 
|  | VERIFY_IS_EQUAL(rs2.info(), Success); | 
|  | VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT()); | 
|  | VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU()); | 
|  |  | 
|  | // Test maximum number of iterations | 
|  | RealSchur<MatrixType> rs3; | 
|  | rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A); | 
|  | VERIFY_IS_EQUAL(rs3.info(), Success); | 
|  | VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT()); | 
|  | VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU()); | 
|  | if (size > 2) { | 
|  | rs3.setMaxIterations(1).compute(A); | 
|  | VERIFY_IS_EQUAL(rs3.info(), NoConvergence); | 
|  | VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1); | 
|  | } | 
|  |  | 
|  | MatrixType Atriangular = A; | 
|  | Atriangular.template triangularView<StrictlyLower>().setZero(); | 
|  | rs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations | 
|  | VERIFY_IS_EQUAL(rs3.info(), Success); | 
|  | VERIFY_IS_APPROX(rs3.matrixT(), Atriangular); // approx because of scaling... | 
|  | VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size)); | 
|  |  | 
|  | // Test computation of only T, not U | 
|  | RealSchur<MatrixType> rsOnlyT(A, false); | 
|  | VERIFY_IS_EQUAL(rsOnlyT.info(), Success); | 
|  | VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT()); | 
|  | VERIFY_RAISES_ASSERT(rsOnlyT.matrixU()); | 
|  |  | 
|  | if (size > 2 && size < 20) | 
|  | { | 
|  | // Test matrix with NaN | 
|  | A(0,0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN(); | 
|  | RealSchur<MatrixType> rsNaN(A); | 
|  | VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_schur_real() | 
|  | { | 
|  | CALL_SUBTEST_1(( schur<Matrix4f>() )); | 
|  | CALL_SUBTEST_2(( schur<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) )); | 
|  | CALL_SUBTEST_3(( schur<Matrix<float, 1, 1> >() )); | 
|  | CALL_SUBTEST_4(( schur<Matrix<double, 3, 3, Eigen::RowMajor> >() )); | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_5(RealSchur<MatrixXf>(10)); | 
|  | } |