| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_EULERSYSTEM_H |
| #define EIGEN_EULERSYSTEM_H |
| |
| namespace Eigen |
| { |
| // Forward declarations |
| template <typename _Scalar, class _System> |
| class EulerAngles; |
| |
| namespace internal |
| { |
| // TODO: Add this trait to the Eigen internal API? |
| template <int Num, bool IsPositive = (Num > 0)> |
| struct Abs |
| { |
| enum { value = Num }; |
| }; |
| |
| template <int Num> |
| struct Abs<Num, false> |
| { |
| enum { value = -Num }; |
| }; |
| |
| template <int Axis> |
| struct IsValidAxis |
| { |
| enum { value = Axis != 0 && Abs<Axis>::value <= 3 }; |
| }; |
| |
| template<typename System, |
| typename Other, |
| int OtherRows=Other::RowsAtCompileTime, |
| int OtherCols=Other::ColsAtCompileTime> |
| struct eulerangles_assign_impl; |
| } |
| |
| #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1] |
| |
| /** \brief Representation of a fixed signed rotation axis for EulerSystem. |
| * |
| * \ingroup EulerAngles_Module |
| * |
| * Values here represent: |
| * - The axis of the rotation: X, Y or Z. |
| * - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-) |
| * |
| * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z} |
| * |
| * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}. |
| */ |
| enum EulerAxis |
| { |
| EULER_X = 1, /*!< the X axis */ |
| EULER_Y = 2, /*!< the Y axis */ |
| EULER_Z = 3 /*!< the Z axis */ |
| }; |
| |
| /** \class EulerSystem |
| * |
| * \ingroup EulerAngles_Module |
| * |
| * \brief Represents a fixed Euler rotation system. |
| * |
| * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles. |
| * |
| * You can use this class to get two things: |
| * - Build an Euler system, and then pass it as a template parameter to EulerAngles. |
| * - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan) |
| * |
| * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles) |
| * This meta-class store constantly those signed axes. (see \ref EulerAxis) |
| * |
| * ### Types of Euler systems ### |
| * |
| * All and only valid 3 dimension Euler rotation over standard |
| * signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported: |
| * - all axes X, Y, Z in each valid order (see below what order is valid) |
| * - rotation over the axis is supported both over the positive and negative directions. |
| * - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite). |
| * |
| * Since EulerSystem support both positive and negative directions, |
| * you may call this rotation distinction in other names: |
| * - _right handed_ or _left handed_ |
| * - _counterclockwise_ or _clockwise_ |
| * |
| * Notice all axed combination are valid, and would trigger a static assertion. |
| * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid. |
| * This yield two and only two classes: |
| * - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z} |
| * - _proper/classic Euler angles_ - The first and the third unsigned axes is equal, |
| * and the second is different, e.g. {X,Y,X} |
| * |
| * ### Intrinsic vs extrinsic Euler systems ### |
| * |
| * Only intrinsic Euler systems are supported for simplicity. |
| * If you want to use extrinsic Euler systems, |
| * just use the equal intrinsic opposite order for axes and angles. |
| * I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a). |
| * |
| * ### Convenient user typedefs ### |
| * |
| * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems), |
| * in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ. |
| * |
| * ### Additional reading ### |
| * |
| * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles |
| * |
| * \tparam _AlphaAxis the first fixed EulerAxis |
| * |
| * \tparam _BetaAxis the second fixed EulerAxis |
| * |
| * \tparam _GammaAxis the third fixed EulerAxis |
| */ |
| template <int _AlphaAxis, int _BetaAxis, int _GammaAxis> |
| class EulerSystem |
| { |
| public: |
| // It's defined this way and not as enum, because I think |
| // that enum is not guerantee to support negative numbers |
| |
| /** The first rotation axis */ |
| static const int AlphaAxis = _AlphaAxis; |
| |
| /** The second rotation axis */ |
| static const int BetaAxis = _BetaAxis; |
| |
| /** The third rotation axis */ |
| static const int GammaAxis = _GammaAxis; |
| |
| enum |
| { |
| AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */ |
| BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */ |
| GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */ |
| |
| IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */ |
| IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */ |
| IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */ |
| |
| // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed |
| // by Z, or Z is followed by X; otherwise it is odd. |
| IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */ |
| IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */ |
| |
| IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */ |
| }; |
| |
| private: |
| |
| EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value, |
| ALPHA_AXIS_IS_INVALID); |
| |
| EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value, |
| BETA_AXIS_IS_INVALID); |
| |
| EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value, |
| GAMMA_AXIS_IS_INVALID); |
| |
| EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs, |
| ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS); |
| |
| EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs, |
| BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS); |
| |
| enum |
| { |
| // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system. |
| // They are used in this class converters. |
| // They are always different from each other, and their possible values are: 0, 1, or 2. |
| I = AlphaAxisAbs - 1, |
| J = (AlphaAxisAbs - 1 + 1 + IsOdd)%3, |
| K = (AlphaAxisAbs - 1 + 2 - IsOdd)%3 |
| }; |
| |
| // TODO: Get @mat parameter in form that avoids double evaluation. |
| template <typename Derived> |
| static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/) |
| { |
| using std::atan2; |
| using std::sqrt; |
| |
| typedef typename Derived::Scalar Scalar; |
| |
| const Scalar plusMinus = IsEven? 1 : -1; |
| const Scalar minusPlus = IsOdd? 1 : -1; |
| |
| const Scalar Rsum = sqrt((mat(I,I) * mat(I,I) + mat(I,J) * mat(I,J) + mat(J,K) * mat(J,K) + mat(K,K) * mat(K,K))/2); |
| res[1] = atan2(plusMinus * mat(I,K), Rsum); |
| |
| // There is a singularity when cos(beta) == 0 |
| if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0 |
| res[0] = atan2(minusPlus * mat(J, K), mat(K, K)); |
| res[2] = atan2(minusPlus * mat(I, J), mat(I, I)); |
| } |
| else if(plusMinus * mat(I, K) > 0) {// cos(beta) == 0 and sin(beta) == 1 |
| Scalar spos = mat(J, I) + plusMinus * mat(K, J); // 2*sin(alpha + plusMinus * gamma |
| Scalar cpos = mat(J, J) + minusPlus * mat(K, I); // 2*cos(alpha + plusMinus * gamma) |
| Scalar alphaPlusMinusGamma = atan2(spos, cpos); |
| res[0] = alphaPlusMinusGamma; |
| res[2] = 0; |
| } |
| else {// cos(beta) == 0 and sin(beta) == -1 |
| Scalar sneg = plusMinus * (mat(K, J) + minusPlus * mat(J, I)); // 2*sin(alpha + minusPlus*gamma) |
| Scalar cneg = mat(J, J) + plusMinus * mat(K, I); // 2*cos(alpha + minusPlus*gamma) |
| Scalar alphaMinusPlusBeta = atan2(sneg, cneg); |
| res[0] = alphaMinusPlusBeta; |
| res[2] = 0; |
| } |
| } |
| |
| template <typename Derived> |
| static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, |
| const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/) |
| { |
| using std::atan2; |
| using std::sqrt; |
| |
| typedef typename Derived::Scalar Scalar; |
| |
| const Scalar plusMinus = IsEven? 1 : -1; |
| const Scalar minusPlus = IsOdd? 1 : -1; |
| |
| const Scalar Rsum = sqrt((mat(I, J) * mat(I, J) + mat(I, K) * mat(I, K) + mat(J, I) * mat(J, I) + mat(K, I) * mat(K, I)) / 2); |
| |
| res[1] = atan2(Rsum, mat(I, I)); |
| |
| // There is a singularity when sin(beta) == 0 |
| if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0 |
| res[0] = atan2(mat(J, I), minusPlus * mat(K, I)); |
| res[2] = atan2(mat(I, J), plusMinus * mat(I, K)); |
| } |
| else if(mat(I, I) > 0) {// sin(beta) == 0 and cos(beta) == 1 |
| Scalar spos = plusMinus * mat(K, J) + minusPlus * mat(J, K); // 2*sin(alpha + gamma) |
| Scalar cpos = mat(J, J) + mat(K, K); // 2*cos(alpha + gamma) |
| res[0] = atan2(spos, cpos); |
| res[2] = 0; |
| } |
| else {// sin(beta) == 0 and cos(beta) == -1 |
| Scalar sneg = plusMinus * mat(K, J) + plusMinus * mat(J, K); // 2*sin(alpha - gamma) |
| Scalar cneg = mat(J, J) - mat(K, K); // 2*cos(alpha - gamma) |
| res[0] = atan2(sneg, cneg); |
| res[2] = 0; |
| } |
| } |
| |
| template<typename Scalar> |
| static void CalcEulerAngles( |
| EulerAngles<Scalar, EulerSystem>& res, |
| const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat) |
| { |
| CalcEulerAngles_imp( |
| res.angles(), mat, |
| typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type()); |
| |
| if (IsAlphaOpposite) |
| res.alpha() = -res.alpha(); |
| |
| if (IsBetaOpposite) |
| res.beta() = -res.beta(); |
| |
| if (IsGammaOpposite) |
| res.gamma() = -res.gamma(); |
| } |
| |
| template <typename _Scalar, class _System> |
| friend class Eigen::EulerAngles; |
| |
| template<typename System, |
| typename Other, |
| int OtherRows, |
| int OtherCols> |
| friend struct internal::eulerangles_assign_impl; |
| }; |
| |
| #define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \ |
| /** \ingroup EulerAngles_Module */ \ |
| typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C; |
| |
| EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z) |
| EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X) |
| EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y) |
| EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X) |
| |
| EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X) |
| EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y) |
| EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z) |
| EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y) |
| |
| EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y) |
| EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z) |
| EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X) |
| EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z) |
| } |
| |
| #endif // EIGEN_EULERSYSTEM_H |