|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "matrix_functions.h" | 
|  |  | 
|  | template<typename T> | 
|  | void test2dRotation(const T& tol) | 
|  | { | 
|  | Matrix<T,2,2> A, B, C; | 
|  | T angle, c, s; | 
|  |  | 
|  | A << 0, 1, -1, 0; | 
|  | MatrixPower<Matrix<T,2,2> > Apow(A); | 
|  |  | 
|  | for (int i=0; i<=20; ++i) { | 
|  | angle = std::pow(T(10), (i-10) / T(5.)); | 
|  | c = std::cos(angle); | 
|  | s = std::sin(angle); | 
|  | B << c, s, -s, c; | 
|  |  | 
|  | C = Apow(std::ldexp(angle,1) / T(EIGEN_PI)); | 
|  | std::cout << "test2dRotation: i = " << i << "   error powerm = " << relerr(C,B) << '\n'; | 
|  | VERIFY(C.isApprox(B, tol)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | void test2dHyperbolicRotation(const T& tol) | 
|  | { | 
|  | Matrix<std::complex<T>,2,2> A, B, C; | 
|  | T angle, ch = std::cosh((T)1); | 
|  | std::complex<T> ish(0, std::sinh((T)1)); | 
|  |  | 
|  | A << ch, ish, -ish, ch; | 
|  | MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A); | 
|  |  | 
|  | for (int i=0; i<=20; ++i) { | 
|  | angle = std::ldexp(static_cast<T>(i-10), -1); | 
|  | ch = std::cosh(angle); | 
|  | ish = std::complex<T>(0, std::sinh(angle)); | 
|  | B << ch, ish, -ish, ch; | 
|  |  | 
|  | C = Apow(angle); | 
|  | std::cout << "test2dHyperbolicRotation: i = " << i << "   error powerm = " << relerr(C,B) << '\n'; | 
|  | VERIFY(C.isApprox(B, tol)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | void test3dRotation(const T& tol) | 
|  | { | 
|  | Matrix<T,3,1> v; | 
|  | T angle; | 
|  |  | 
|  | for (int i=0; i<=20; ++i) { | 
|  | v = Matrix<T,3,1>::Random(); | 
|  | v.normalize(); | 
|  | angle = std::pow(T(10), (i-10) / T(5.)); | 
|  | VERIFY(AngleAxis<T>(angle, v).matrix().isApprox(AngleAxis<T>(1,v).matrix().pow(angle), tol)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void testGeneral(const MatrixType& m, const typename MatrixType::RealScalar& tol) | 
|  | { | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | MatrixType m1, m2, m3, m4, m5; | 
|  | RealScalar x, y; | 
|  |  | 
|  | for (int i=0; i < g_repeat; ++i) { | 
|  | generateTestMatrix<MatrixType>::run(m1, m.rows()); | 
|  | MatrixPower<MatrixType> mpow(m1); | 
|  |  | 
|  | x = internal::random<RealScalar>(); | 
|  | y = internal::random<RealScalar>(); | 
|  | m2 = mpow(x); | 
|  | m3 = mpow(y); | 
|  |  | 
|  | m4 = mpow(x+y); | 
|  | m5.noalias() = m2 * m3; | 
|  | VERIFY(m4.isApprox(m5, tol)); | 
|  |  | 
|  | m4 = mpow(x*y); | 
|  | m5 = m2.pow(y); | 
|  | VERIFY(m4.isApprox(m5, tol)); | 
|  |  | 
|  | m4 = (std::abs(x) * m1).pow(y); | 
|  | m5 = std::pow(std::abs(x), y) * m3; | 
|  | VERIFY(m4.isApprox(m5, tol)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void testSingular(const MatrixType& m_const, const typename MatrixType::RealScalar& tol) | 
|  | { | 
|  | // we need to pass by reference in order to prevent errors with | 
|  | // MSVC for aligned data types ... | 
|  | MatrixType& m = const_cast<MatrixType&>(m_const); | 
|  |  | 
|  | const int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex; | 
|  | typedef typename internal::conditional<IsComplex, TriangularView<MatrixType,Upper>, const MatrixType&>::type TriangularType; | 
|  | typename internal::conditional< IsComplex, ComplexSchur<MatrixType>, RealSchur<MatrixType> >::type schur; | 
|  | MatrixType T; | 
|  |  | 
|  | for (int i=0; i < g_repeat; ++i) { | 
|  | m.setRandom(); | 
|  | m.col(0).fill(0); | 
|  |  | 
|  | schur.compute(m); | 
|  | T = schur.matrixT(); | 
|  | const MatrixType& U = schur.matrixU(); | 
|  | processTriangularMatrix<MatrixType>::run(m, T, U); | 
|  | MatrixPower<MatrixType> mpow(m); | 
|  |  | 
|  | T = T.sqrt(); | 
|  | VERIFY(mpow(0.5L).isApprox(U * (TriangularType(T) * U.adjoint()), tol)); | 
|  |  | 
|  | T = T.sqrt(); | 
|  | VERIFY(mpow(0.25L).isApprox(U * (TriangularType(T) * U.adjoint()), tol)); | 
|  |  | 
|  | T = T.sqrt(); | 
|  | VERIFY(mpow(0.125L).isApprox(U * (TriangularType(T) * U.adjoint()), tol)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void testLogThenExp(const MatrixType& m_const, const typename MatrixType::RealScalar& tol) | 
|  | { | 
|  | // we need to pass by reference in order to prevent errors with | 
|  | // MSVC for aligned data types ... | 
|  | MatrixType& m = const_cast<MatrixType&>(m_const); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | Scalar x; | 
|  |  | 
|  | for (int i=0; i < g_repeat; ++i) { | 
|  | generateTestMatrix<MatrixType>::run(m, m.rows()); | 
|  | x = internal::random<Scalar>(); | 
|  | VERIFY(m.pow(x).isApprox((x * m.log()).exp(), tol)); | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef Matrix<double,3,3,RowMajor>         Matrix3dRowMajor; | 
|  | typedef Matrix<long double,3,3>             Matrix3e; | 
|  | typedef Matrix<long double,Dynamic,Dynamic> MatrixXe; | 
|  |  | 
|  | void test_matrix_power() | 
|  | { | 
|  | CALL_SUBTEST_2(test2dRotation<double>(1e-13)); | 
|  | CALL_SUBTEST_1(test2dRotation<float>(2e-5));  // was 1e-5, relaxed for clang 2.8 / linux / x86-64 | 
|  | CALL_SUBTEST_9(test2dRotation<long double>(1e-13L)); | 
|  | CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14)); | 
|  | CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5)); | 
|  | CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14L)); | 
|  |  | 
|  | CALL_SUBTEST_10(test3dRotation<double>(1e-13)); | 
|  | CALL_SUBTEST_11(test3dRotation<float>(1e-5)); | 
|  | CALL_SUBTEST_12(test3dRotation<long double>(1e-13L)); | 
|  |  | 
|  | CALL_SUBTEST_2(testGeneral(Matrix2d(),         1e-13)); | 
|  | CALL_SUBTEST_7(testGeneral(Matrix3dRowMajor(), 1e-13)); | 
|  | CALL_SUBTEST_3(testGeneral(Matrix4cd(),        1e-13)); | 
|  | CALL_SUBTEST_4(testGeneral(MatrixXd(8,8),      2e-12)); | 
|  | CALL_SUBTEST_1(testGeneral(Matrix2f(),         1e-4)); | 
|  | CALL_SUBTEST_5(testGeneral(Matrix3cf(),        1e-4)); | 
|  | CALL_SUBTEST_8(testGeneral(Matrix4f(),         1e-4)); | 
|  | CALL_SUBTEST_6(testGeneral(MatrixXf(2,2),      1e-3)); // see bug 614 | 
|  | CALL_SUBTEST_9(testGeneral(MatrixXe(7,7),      1e-13L)); | 
|  | CALL_SUBTEST_10(testGeneral(Matrix3d(),        1e-13)); | 
|  | CALL_SUBTEST_11(testGeneral(Matrix3f(),        1e-4)); | 
|  | CALL_SUBTEST_12(testGeneral(Matrix3e(),        1e-13L)); | 
|  |  | 
|  | CALL_SUBTEST_2(testSingular(Matrix2d(),         1e-13)); | 
|  | CALL_SUBTEST_7(testSingular(Matrix3dRowMajor(), 1e-13)); | 
|  | CALL_SUBTEST_3(testSingular(Matrix4cd(),        1e-13)); | 
|  | CALL_SUBTEST_4(testSingular(MatrixXd(8,8),      2e-12)); | 
|  | CALL_SUBTEST_1(testSingular(Matrix2f(),         1e-4)); | 
|  | CALL_SUBTEST_5(testSingular(Matrix3cf(),        1e-4)); | 
|  | CALL_SUBTEST_8(testSingular(Matrix4f(),         1e-4)); | 
|  | CALL_SUBTEST_6(testSingular(MatrixXf(2,2),      1e-3)); | 
|  | CALL_SUBTEST_9(testSingular(MatrixXe(7,7),      1e-13L)); | 
|  | CALL_SUBTEST_10(testSingular(Matrix3d(),        1e-13)); | 
|  | CALL_SUBTEST_11(testSingular(Matrix3f(),        1e-4)); | 
|  | CALL_SUBTEST_12(testSingular(Matrix3e(),        1e-13L)); | 
|  |  | 
|  | CALL_SUBTEST_2(testLogThenExp(Matrix2d(),         1e-13)); | 
|  | CALL_SUBTEST_7(testLogThenExp(Matrix3dRowMajor(), 1e-13)); | 
|  | CALL_SUBTEST_3(testLogThenExp(Matrix4cd(),        1e-13)); | 
|  | CALL_SUBTEST_4(testLogThenExp(MatrixXd(8,8),      2e-12)); | 
|  | CALL_SUBTEST_1(testLogThenExp(Matrix2f(),         1e-4)); | 
|  | CALL_SUBTEST_5(testLogThenExp(Matrix3cf(),        1e-4)); | 
|  | CALL_SUBTEST_8(testLogThenExp(Matrix4f(),         1e-4)); | 
|  | CALL_SUBTEST_6(testLogThenExp(MatrixXf(2,2),      1e-3)); | 
|  | CALL_SUBTEST_9(testLogThenExp(MatrixXe(7,7),      1e-13L)); | 
|  | CALL_SUBTEST_10(testLogThenExp(Matrix3d(),        1e-13)); | 
|  | CALL_SUBTEST_11(testLogThenExp(Matrix3f(),        1e-4)); | 
|  | CALL_SUBTEST_12(testLogThenExp(Matrix3e(),        1e-13L)); | 
|  | } |