|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/Polynomials> | 
|  | #include <iostream> | 
|  | #include <algorithm> | 
|  |  | 
|  | using namespace std; | 
|  |  | 
|  | namespace Eigen { | 
|  | namespace internal { | 
|  | template<int Size> | 
|  | struct increment_if_fixed_size | 
|  | { | 
|  | enum { | 
|  | ret = (Size == Dynamic) ? Dynamic : Size+1 | 
|  | }; | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<int Deg, typename POLYNOMIAL, typename SOLVER> | 
|  | bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve ) | 
|  | { | 
|  | typedef typename POLYNOMIAL::Index Index; | 
|  | typedef typename POLYNOMIAL::Scalar Scalar; | 
|  | typedef typename POLYNOMIAL::RealScalar RealScalar; | 
|  |  | 
|  | typedef typename SOLVER::RootsType    RootsType; | 
|  | typedef Matrix<RealScalar,Deg,1>      EvalRootsType; | 
|  |  | 
|  | const Index deg = pols.size()-1; | 
|  |  | 
|  | // Test template constructor from coefficient vector | 
|  | SOLVER solve_constr (pols); | 
|  |  | 
|  | psolve.compute( pols ); | 
|  | const RootsType& roots( psolve.roots() ); | 
|  | EvalRootsType evr( deg ); | 
|  | for( int i=0; i<roots.size(); ++i ){ | 
|  | evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } | 
|  |  | 
|  | bool evalToZero = evr.isZero( test_precision<Scalar>() ); | 
|  | if( !evalToZero ) | 
|  | { | 
|  | cerr << "WRONG root: " << endl; | 
|  | cerr << "Polynomial: " << pols.transpose() << endl; | 
|  | cerr << "Roots found: " << roots.transpose() << endl; | 
|  | cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; | 
|  | cerr << endl; | 
|  | } | 
|  |  | 
|  | std::vector<RealScalar> rootModuli( roots.size() ); | 
|  | Map< EvalRootsType > aux( &rootModuli[0], roots.size() ); | 
|  | aux = roots.array().abs(); | 
|  | std::sort( rootModuli.begin(), rootModuli.end() ); | 
|  | bool distinctModuli=true; | 
|  | for( size_t i=1; i<rootModuli.size() && distinctModuli; ++i ) | 
|  | { | 
|  | if( internal::isApprox( rootModuli[i], rootModuli[i-1] ) ){ | 
|  | distinctModuli = false; } | 
|  | } | 
|  | VERIFY( evalToZero || !distinctModuli ); | 
|  |  | 
|  | return distinctModuli; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | template<int Deg, typename POLYNOMIAL> | 
|  | void evalSolver( const POLYNOMIAL& pols ) | 
|  | { | 
|  | typedef typename POLYNOMIAL::Scalar Scalar; | 
|  |  | 
|  | typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType; | 
|  |  | 
|  | PolynomialSolverType psolve; | 
|  | aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS > | 
|  | void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots ) | 
|  | { | 
|  | using std::sqrt; | 
|  | typedef typename POLYNOMIAL::Scalar Scalar; | 
|  | typedef typename POLYNOMIAL::RealScalar RealScalar; | 
|  |  | 
|  | typedef PolynomialSolver<Scalar, Deg >              PolynomialSolverType; | 
|  |  | 
|  | PolynomialSolverType psolve; | 
|  | if( aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ) ) | 
|  | { | 
|  | //It is supposed that | 
|  | // 1) the roots found are correct | 
|  | // 2) the roots have distinct moduli | 
|  |  | 
|  | //Test realRoots | 
|  | std::vector< RealScalar > calc_realRoots; | 
|  | psolve.realRoots( calc_realRoots,  test_precision<RealScalar>()); | 
|  | VERIFY_IS_EQUAL( calc_realRoots.size() , (size_t)real_roots.size() ); | 
|  |  | 
|  | const RealScalar psPrec = sqrt( test_precision<RealScalar>() ); | 
|  |  | 
|  | for( size_t i=0; i<calc_realRoots.size(); ++i ) | 
|  | { | 
|  | bool found = false; | 
|  | for( size_t j=0; j<calc_realRoots.size()&& !found; ++j ) | 
|  | { | 
|  | if( internal::isApprox( calc_realRoots[i], real_roots[j], psPrec ) ){ | 
|  | found = true; } | 
|  | } | 
|  | VERIFY( found ); | 
|  | } | 
|  |  | 
|  | //Test greatestRoot | 
|  | VERIFY( internal::isApprox( roots.array().abs().maxCoeff(), | 
|  | abs( psolve.greatestRoot() ), psPrec ) ); | 
|  |  | 
|  | //Test smallestRoot | 
|  | VERIFY( internal::isApprox( roots.array().abs().minCoeff(), | 
|  | abs( psolve.smallestRoot() ), psPrec ) ); | 
|  |  | 
|  | bool hasRealRoot; | 
|  | //Test absGreatestRealRoot | 
|  | RealScalar r = psolve.absGreatestRealRoot( hasRealRoot ); | 
|  | VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); | 
|  | if( hasRealRoot ){ | 
|  | VERIFY( internal::isApprox( real_roots.array().abs().maxCoeff(), abs(r), psPrec ) );  } | 
|  |  | 
|  | //Test absSmallestRealRoot | 
|  | r = psolve.absSmallestRealRoot( hasRealRoot ); | 
|  | VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); | 
|  | if( hasRealRoot ){ | 
|  | VERIFY( internal::isApprox( real_roots.array().abs().minCoeff(), abs( r ), psPrec ) ); } | 
|  |  | 
|  | //Test greatestRealRoot | 
|  | r = psolve.greatestRealRoot( hasRealRoot ); | 
|  | VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); | 
|  | if( hasRealRoot ){ | 
|  | VERIFY( internal::isApprox( real_roots.array().maxCoeff(), r, psPrec ) ); } | 
|  |  | 
|  | //Test smallestRealRoot | 
|  | r = psolve.smallestRealRoot( hasRealRoot ); | 
|  | VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); | 
|  | if( hasRealRoot ){ | 
|  | VERIFY( internal::isApprox( real_roots.array().minCoeff(), r, psPrec ) ); } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename _Scalar, int _Deg> | 
|  | void polynomialsolver(int deg) | 
|  | { | 
|  | typedef typename NumTraits<_Scalar>::Real RealScalar; | 
|  | typedef internal::increment_if_fixed_size<_Deg>     Dim; | 
|  | typedef Matrix<_Scalar,Dim::ret,1>                  PolynomialType; | 
|  | typedef Matrix<_Scalar,_Deg,1>                      EvalRootsType; | 
|  | typedef Matrix<RealScalar,_Deg,1>                   RealRootsType; | 
|  |  | 
|  | cout << "Standard cases" << endl; | 
|  | PolynomialType pols = PolynomialType::Random(deg+1); | 
|  | evalSolver<_Deg,PolynomialType>( pols ); | 
|  |  | 
|  | cout << "Hard cases" << endl; | 
|  | _Scalar multipleRoot = internal::random<_Scalar>(); | 
|  | EvalRootsType allRoots = EvalRootsType::Constant(deg,multipleRoot); | 
|  | roots_to_monicPolynomial( allRoots, pols ); | 
|  | evalSolver<_Deg,PolynomialType>( pols ); | 
|  |  | 
|  | cout << "Test sugar" << endl; | 
|  | RealRootsType realRoots = RealRootsType::Random(deg); | 
|  | roots_to_monicPolynomial( realRoots, pols ); | 
|  | evalSolverSugarFunction<_Deg>( | 
|  | pols, | 
|  | realRoots.template cast <std::complex<RealScalar> >().eval(), | 
|  | realRoots ); | 
|  | } | 
|  |  | 
|  | void test_polynomialsolver() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) | 
|  | { | 
|  | CALL_SUBTEST_1( (polynomialsolver<float,1>(1)) ); | 
|  | CALL_SUBTEST_2( (polynomialsolver<double,2>(2)) ); | 
|  | CALL_SUBTEST_3( (polynomialsolver<double,3>(3)) ); | 
|  | CALL_SUBTEST_4( (polynomialsolver<float,4>(4)) ); | 
|  | CALL_SUBTEST_5( (polynomialsolver<double,5>(5)) ); | 
|  | CALL_SUBTEST_6( (polynomialsolver<float,6>(6)) ); | 
|  | CALL_SUBTEST_7( (polynomialsolver<float,7>(7)) ); | 
|  | CALL_SUBTEST_8( (polynomialsolver<double,8>(8)) ); | 
|  |  | 
|  | CALL_SUBTEST_9( (polynomialsolver<float,Dynamic>( | 
|  | internal::random<int>(9,13) | 
|  | )) ); | 
|  | CALL_SUBTEST_10((polynomialsolver<double,Dynamic>( | 
|  | internal::random<int>(9,13) | 
|  | )) ); | 
|  | CALL_SUBTEST_11((polynomialsolver<float,Dynamic>(1)) ); | 
|  | CALL_SUBTEST_12((polynomialsolver<std::complex<double>,Dynamic>(internal::random<int>(2,13))) ); | 
|  | } | 
|  | } |