| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_HESSENBERGDECOMPOSITION_H | 
 | #define EIGEN_HESSENBERGDECOMPOSITION_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | namespace internal { | 
 |    | 
 | template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType; | 
 | template<typename MatrixType> | 
 | struct traits<HessenbergDecompositionMatrixHReturnType<MatrixType> > | 
 | { | 
 |   typedef MatrixType ReturnType; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
 |   * | 
 |   * | 
 |   * \class HessenbergDecomposition | 
 |   * | 
 |   * \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation | 
 |   * | 
 |   * \tparam MatrixType_ the type of the matrix of which we are computing the Hessenberg decomposition | 
 |   * | 
 |   * This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In | 
 |   * the real case, the Hessenberg decomposition consists of an orthogonal | 
 |   * matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H | 
 |   * Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its | 
 |   * transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the | 
 |   * subdiagonal, so it is almost upper triangular. The Hessenberg decomposition | 
 |   * of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is, | 
 |   * \f$ Q^{-1} = Q^* \f$). | 
 |   * | 
 |   * Call the function compute() to compute the Hessenberg decomposition of a | 
 |   * given matrix. Alternatively, you can use the | 
 |   * HessenbergDecomposition(const MatrixType&) constructor which computes the | 
 |   * Hessenberg decomposition at construction time. Once the decomposition is | 
 |   * computed, you can use the matrixH() and matrixQ() functions to construct | 
 |   * the matrices H and Q in the decomposition. | 
 |   * | 
 |   * The documentation for matrixH() contains an example of the typical use of | 
 |   * this class. | 
 |   * | 
 |   * \sa class ComplexSchur, class Tridiagonalization, \ref QR_Module "QR Module" | 
 |   */ | 
 | template<typename MatrixType_> class HessenbergDecomposition | 
 | { | 
 |   public: | 
 |  | 
 |     /** \brief Synonym for the template parameter \p MatrixType_. */ | 
 |     typedef MatrixType_ MatrixType; | 
 |  | 
 |     enum { | 
 |       Size = MatrixType::RowsAtCompileTime, | 
 |       SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1, | 
 |       Options = MatrixType::Options, | 
 |       MaxSize = MatrixType::MaxRowsAtCompileTime, | 
 |       MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1 | 
 |     }; | 
 |  | 
 |     /** \brief Scalar type for matrices of type #MatrixType. */ | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
 |  | 
 |     /** \brief Type for vector of Householder coefficients. | 
 |       * | 
 |       * This is column vector with entries of type #Scalar. The length of the | 
 |       * vector is one less than the size of #MatrixType, if it is a fixed-side | 
 |       * type. | 
 |       */ | 
 |     typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; | 
 |  | 
 |     /** \brief Return type of matrixQ() */ | 
 |     typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType; | 
 |      | 
 |     typedef internal::HessenbergDecompositionMatrixHReturnType<MatrixType> MatrixHReturnType; | 
 |  | 
 |     /** \brief Default constructor; the decomposition will be computed later. | 
 |       * | 
 |       * \param [in] size  The size of the matrix whose Hessenberg decomposition will be computed. | 
 |       * | 
 |       * The default constructor is useful in cases in which the user intends to | 
 |       * perform decompositions via compute().  The \p size parameter is only | 
 |       * used as a hint. It is not an error to give a wrong \p size, but it may | 
 |       * impair performance. | 
 |       * | 
 |       * \sa compute() for an example. | 
 |       */ | 
 |     explicit HessenbergDecomposition(Index size = Size==Dynamic ? 2 : Size) | 
 |       : m_matrix(size,size), | 
 |         m_temp(size), | 
 |         m_isInitialized(false) | 
 |     { | 
 |       if(size>1) | 
 |         m_hCoeffs.resize(size-1); | 
 |     } | 
 |  | 
 |     /** \brief Constructor; computes Hessenberg decomposition of given matrix. | 
 |       * | 
 |       * \param[in]  matrix  Square matrix whose Hessenberg decomposition is to be computed. | 
 |       * | 
 |       * This constructor calls compute() to compute the Hessenberg | 
 |       * decomposition. | 
 |       * | 
 |       * \sa matrixH() for an example. | 
 |       */ | 
 |     template<typename InputType> | 
 |     explicit HessenbergDecomposition(const EigenBase<InputType>& matrix) | 
 |       : m_matrix(matrix.derived()), | 
 |         m_temp(matrix.rows()), | 
 |         m_isInitialized(false) | 
 |     { | 
 |       if(matrix.rows()<2) | 
 |       { | 
 |         m_isInitialized = true; | 
 |         return; | 
 |       } | 
 |       m_hCoeffs.resize(matrix.rows()-1,1); | 
 |       _compute(m_matrix, m_hCoeffs, m_temp); | 
 |       m_isInitialized = true; | 
 |     } | 
 |  | 
 |     /** \brief Computes Hessenberg decomposition of given matrix. | 
 |       * | 
 |       * \param[in]  matrix  Square matrix whose Hessenberg decomposition is to be computed. | 
 |       * \returns    Reference to \c *this | 
 |       * | 
 |       * The Hessenberg decomposition is computed by bringing the columns of the | 
 |       * matrix successively in the required form using Householder reflections | 
 |       * (see, e.g., Algorithm 7.4.2 in Golub \& Van Loan, <i>%Matrix | 
 |       * Computations</i>). The cost is \f$ 10n^3/3 \f$ flops, where \f$ n \f$ | 
 |       * denotes the size of the given matrix. | 
 |       * | 
 |       * This method reuses of the allocated data in the HessenbergDecomposition | 
 |       * object. | 
 |       * | 
 |       * Example: \include HessenbergDecomposition_compute.cpp | 
 |       * Output: \verbinclude HessenbergDecomposition_compute.out | 
 |       */ | 
 |     template<typename InputType> | 
 |     HessenbergDecomposition& compute(const EigenBase<InputType>& matrix) | 
 |     { | 
 |       m_matrix = matrix.derived(); | 
 |       if(matrix.rows()<2) | 
 |       { | 
 |         m_isInitialized = true; | 
 |         return *this; | 
 |       } | 
 |       m_hCoeffs.resize(matrix.rows()-1,1); | 
 |       _compute(m_matrix, m_hCoeffs, m_temp); | 
 |       m_isInitialized = true; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     /** \brief Returns the Householder coefficients. | 
 |       * | 
 |       * \returns a const reference to the vector of Householder coefficients | 
 |       * | 
 |       * \pre Either the constructor HessenbergDecomposition(const MatrixType&) | 
 |       * or the member function compute(const MatrixType&) has been called | 
 |       * before to compute the Hessenberg decomposition of a matrix. | 
 |       * | 
 |       * The Householder coefficients allow the reconstruction of the matrix | 
 |       * \f$ Q \f$ in the Hessenberg decomposition from the packed data. | 
 |       * | 
 |       * \sa packedMatrix(), \ref Householder_Module "Householder module" | 
 |       */ | 
 |     const CoeffVectorType& householderCoefficients() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); | 
 |       return m_hCoeffs; | 
 |     } | 
 |  | 
 |     /** \brief Returns the internal representation of the decomposition | 
 |       * | 
 |       *	\returns a const reference to a matrix with the internal representation | 
 |       *	         of the decomposition. | 
 |       * | 
 |       * \pre Either the constructor HessenbergDecomposition(const MatrixType&) | 
 |       * or the member function compute(const MatrixType&) has been called | 
 |       * before to compute the Hessenberg decomposition of a matrix. | 
 |       * | 
 |       * The returned matrix contains the following information: | 
 |       *  - the upper part and lower sub-diagonal represent the Hessenberg matrix H | 
 |       *  - the rest of the lower part contains the Householder vectors that, combined with | 
 |       *    Householder coefficients returned by householderCoefficients(), | 
 |       *    allows to reconstruct the matrix Q as | 
 |       *       \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. | 
 |       *    Here, the matrices \f$ H_i \f$ are the Householder transformations | 
 |       *       \f$ H_i = (I - h_i v_i v_i^T) \f$ | 
 |       *    where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and | 
 |       *    \f$ v_i \f$ is the Householder vector defined by | 
 |       *       \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ | 
 |       *    with M the matrix returned by this function. | 
 |       * | 
 |       * See LAPACK for further details on this packed storage. | 
 |       * | 
 |       * Example: \include HessenbergDecomposition_packedMatrix.cpp | 
 |       * Output: \verbinclude HessenbergDecomposition_packedMatrix.out | 
 |       * | 
 |       * \sa householderCoefficients() | 
 |       */ | 
 |     const MatrixType& packedMatrix() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); | 
 |       return m_matrix; | 
 |     } | 
 |  | 
 |     /** \brief Reconstructs the orthogonal matrix Q in the decomposition | 
 |       * | 
 |       * \returns object representing the matrix Q | 
 |       * | 
 |       * \pre Either the constructor HessenbergDecomposition(const MatrixType&) | 
 |       * or the member function compute(const MatrixType&) has been called | 
 |       * before to compute the Hessenberg decomposition of a matrix. | 
 |       * | 
 |       * This function returns a light-weight object of template class | 
 |       * HouseholderSequence. You can either apply it directly to a matrix or | 
 |       * you can convert it to a matrix of type #MatrixType. | 
 |       * | 
 |       * \sa matrixH() for an example, class HouseholderSequence | 
 |       */ | 
 |     HouseholderSequenceType matrixQ() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); | 
 |       return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) | 
 |              .setLength(m_matrix.rows() - 1) | 
 |              .setShift(1); | 
 |     } | 
 |  | 
 |     /** \brief Constructs the Hessenberg matrix H in the decomposition | 
 |       * | 
 |       * \returns expression object representing the matrix H | 
 |       * | 
 |       * \pre Either the constructor HessenbergDecomposition(const MatrixType&) | 
 |       * or the member function compute(const MatrixType&) has been called | 
 |       * before to compute the Hessenberg decomposition of a matrix. | 
 |       * | 
 |       * The object returned by this function constructs the Hessenberg matrix H | 
 |       * when it is assigned to a matrix or otherwise evaluated. The matrix H is | 
 |       * constructed from the packed matrix as returned by packedMatrix(): The | 
 |       * upper part (including the subdiagonal) of the packed matrix contains | 
 |       * the matrix H. It may sometimes be better to directly use the packed | 
 |       * matrix instead of constructing the matrix H. | 
 |       * | 
 |       * Example: \include HessenbergDecomposition_matrixH.cpp | 
 |       * Output: \verbinclude HessenbergDecomposition_matrixH.out | 
 |       * | 
 |       * \sa matrixQ(), packedMatrix() | 
 |       */ | 
 |     MatrixHReturnType matrixH() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); | 
 |       return MatrixHReturnType(*this); | 
 |     } | 
 |  | 
 |   private: | 
 |  | 
 |     typedef Matrix<Scalar, 1, Size, int(Options) | int(RowMajor), 1, MaxSize> VectorType; | 
 |     typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |     static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp); | 
 |  | 
 |   protected: | 
 |     MatrixType m_matrix; | 
 |     CoeffVectorType m_hCoeffs; | 
 |     VectorType m_temp; | 
 |     bool m_isInitialized; | 
 | }; | 
 |  | 
 | /** \internal | 
 |   * Performs a tridiagonal decomposition of \a matA in place. | 
 |   * | 
 |   * \param matA the input selfadjoint matrix | 
 |   * \param hCoeffs returned Householder coefficients | 
 |   * | 
 |   * The result is written in the lower triangular part of \a matA. | 
 |   * | 
 |   * Implemented from Golub's "%Matrix Computations", algorithm 8.3.1. | 
 |   * | 
 |   * \sa packedMatrix() | 
 |   */ | 
 | template<typename MatrixType> | 
 | void HessenbergDecomposition<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp) | 
 | { | 
 |   eigen_assert(matA.rows()==matA.cols()); | 
 |   Index n = matA.rows(); | 
 |   temp.resize(n); | 
 |   for (Index i = 0; i<n-1; ++i) | 
 |   { | 
 |     // let's consider the vector v = i-th column starting at position i+1 | 
 |     Index remainingSize = n-i-1; | 
 |     RealScalar beta; | 
 |     Scalar h; | 
 |     matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); | 
 |     matA.col(i).coeffRef(i+1) = beta; | 
 |     hCoeffs.coeffRef(i) = h; | 
 |  | 
 |     // Apply similarity transformation to remaining columns, | 
 |     // i.e., compute A = H A H' | 
 |  | 
 |     // A = H A | 
 |     matA.bottomRightCorner(remainingSize, remainingSize) | 
 |         .applyHouseholderOnTheLeft(matA.col(i).tail(remainingSize-1), h, &temp.coeffRef(0)); | 
 |  | 
 |     // A = A H' | 
 |     matA.rightCols(remainingSize) | 
 |         .applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1), numext::conj(h), &temp.coeffRef(0)); | 
 |   } | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
 |   * | 
 |   * | 
 |   * \brief Expression type for return value of HessenbergDecomposition::matrixH() | 
 |   * | 
 |   * \tparam MatrixType type of matrix in the Hessenberg decomposition | 
 |   * | 
 |   * Objects of this type represent the Hessenberg matrix in the Hessenberg | 
 |   * decomposition of some matrix. The object holds a reference to the | 
 |   * HessenbergDecomposition class until the it is assigned or evaluated for | 
 |   * some other reason (the reference should remain valid during the life time | 
 |   * of this object). This class is the return type of | 
 |   * HessenbergDecomposition::matrixH(); there is probably no other use for this | 
 |   * class. | 
 |   */ | 
 | template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType | 
 | : public ReturnByValue<HessenbergDecompositionMatrixHReturnType<MatrixType> > | 
 | { | 
 |   public: | 
 |     /** \brief Constructor. | 
 |       * | 
 |       * \param[in] hess  Hessenberg decomposition | 
 |       */ | 
 |     HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition<MatrixType>& hess) : m_hess(hess) { } | 
 |  | 
 |     /** \brief Hessenberg matrix in decomposition. | 
 |       * | 
 |       * \param[out] result  Hessenberg matrix in decomposition \p hess which | 
 |       *                     was passed to the constructor | 
 |       */ | 
 |     template <typename ResultType> | 
 |     inline void evalTo(ResultType& result) const | 
 |     { | 
 |       result = m_hess.packedMatrix(); | 
 |       Index n = result.rows(); | 
 |       if (n>2) | 
 |         result.bottomLeftCorner(n-2, n-2).template triangularView<Lower>().setZero(); | 
 |     } | 
 |  | 
 |     Index rows() const { return m_hess.packedMatrix().rows(); } | 
 |     Index cols() const { return m_hess.packedMatrix().cols(); } | 
 |  | 
 |   protected: | 
 |     const HessenbergDecomposition<MatrixType>& m_hess; | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_HESSENBERGDECOMPOSITION_H |