|  | namespace Eigen { | 
|  |  | 
|  | /** \eigenManualPage QuickRefPage Quick reference guide | 
|  |  | 
|  | \eigenAutoToc | 
|  |  | 
|  | <hr> | 
|  |  | 
|  | <a href="#" class="top">top</a> | 
|  | \section QuickRef_Headers Modules and Header files | 
|  |  | 
|  | The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once. | 
|  |  | 
|  | <table class="manual"> | 
|  | <tr><th>Module</th><th>Header file</th><th>Contents</th></tr> | 
|  | <tr            ><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr> | 
|  | <tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr> | 
|  | <tr            ><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr> | 
|  | <tr class="alt"><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr> | 
|  | <tr            ><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr> | 
|  | <tr class="alt"><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decompositions with least-squares solver (JacobiSVD, BDCSVD)</td></tr> | 
|  | <tr            ><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr> | 
|  | <tr class="alt"><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr> | 
|  | <tr            ><td>\link Sparse_Module Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, SparseVector) \n (see \ref SparseQuickRefPage for details on sparse modules)</td></tr> | 
|  | <tr class="alt"><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr> | 
|  | <tr            ><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr> | 
|  | </table> | 
|  |  | 
|  | <a href="#" class="top">top</a> | 
|  | \section QuickRef_Types Array, matrix and vector types | 
|  |  | 
|  |  | 
|  | \b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array: | 
|  | \code | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType; | 
|  | typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType; | 
|  | \endcode | 
|  |  | 
|  | \li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.). | 
|  | \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic. | 
|  | \li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options) | 
|  |  | 
|  | All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid: | 
|  | \code | 
|  | Matrix<double, 6, Dynamic>                  // Dynamic number of columns (heap allocation) | 
|  | Matrix<double, Dynamic, 2>                  // Dynamic number of rows (heap allocation) | 
|  | Matrix<double, Dynamic, Dynamic, RowMajor>  // Fully dynamic, row major (heap allocation) | 
|  | Matrix<double, 13, 3>                       // Fully fixed (usually allocated on stack) | 
|  | \endcode | 
|  |  | 
|  | In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples: | 
|  | <table class="example"> | 
|  | <tr><th>Matrices</th><th>Arrays</th></tr> | 
|  | <tr><td>\code | 
|  | Matrix<float,Dynamic,Dynamic>   <=>   MatrixXf | 
|  | Matrix<double,Dynamic,1>        <=>   VectorXd | 
|  | Matrix<int,1,Dynamic>           <=>   RowVectorXi | 
|  | Matrix<float,3,3>               <=>   Matrix3f | 
|  | Matrix<float,4,1>               <=>   Vector4f | 
|  | \endcode</td><td>\code | 
|  | Array<float,Dynamic,Dynamic>    <=>   ArrayXXf | 
|  | Array<double,Dynamic,1>         <=>   ArrayXd | 
|  | Array<int,1,Dynamic>            <=>   RowArrayXi | 
|  | Array<float,3,3>                <=>   Array33f | 
|  | Array<float,4,1>                <=>   Array4f | 
|  | \endcode</td></tr> | 
|  | </table> | 
|  |  | 
|  | Conversion between the matrix and array worlds: | 
|  | \code | 
|  | Array44f a1, a2; | 
|  | Matrix4f m1, m2; | 
|  | m1 = a1 * a2;                     // coeffwise product, implicit conversion from array to matrix. | 
|  | a1 = m1 * m2;                     // matrix product, implicit conversion from matrix to array. | 
|  | a2 = a1 + m1.array();             // mixing array and matrix is forbidden | 
|  | m2 = a1.matrix() + m1;            // and explicit conversion is required. | 
|  | ArrayWrapper<Matrix4f> m1a(m1);   // m1a is an alias for m1.array(), they share the same coefficients | 
|  | MatrixWrapper<Array44f> a1m(a1); | 
|  | \endcode | 
|  |  | 
|  | In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object: | 
|  | \li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only | 
|  | \li <a name="arrayonly"></a>\arrayworld array objects only | 
|  |  | 
|  | \subsection QuickRef_Basics Basic matrix manipulation | 
|  |  | 
|  | <table class="manual"> | 
|  | <tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr> | 
|  | <tr><td>Constructors</td> | 
|  | <td>\code | 
|  | Vector4d  v4; | 
|  | Vector2f  v1(x, y); | 
|  | Array3i   v2(x, y, z); | 
|  | Vector4d  v3(x, y, z, w); | 
|  |  | 
|  | VectorXf  v5; // empty object | 
|  | ArrayXf   v6(size); | 
|  | \endcode</td><td>\code | 
|  | Matrix4f  m1; | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | MatrixXf  m5; // empty object | 
|  | MatrixXf  m6(nb_rows, nb_columns); | 
|  | \endcode</td><td class="note"> | 
|  | By default, the coefficients \n are left uninitialized</td></tr> | 
|  | <tr class="alt"><td>Comma initializer</td> | 
|  | <td>\code | 
|  | Vector3f  v1;     v1 << x, y, z; | 
|  | ArrayXf   v2(4);  v2 << 1, 2, 3, 4; | 
|  |  | 
|  | \endcode</td><td>\code | 
|  | Matrix3f  m1;   m1 << 1, 2, 3, | 
|  | 4, 5, 6, | 
|  | 7, 8, 9; | 
|  | \endcode</td><td></td></tr> | 
|  |  | 
|  | <tr><td>Comma initializer (bis)</td> | 
|  | <td colspan="2"> | 
|  | \include Tutorial_commainit_02.cpp | 
|  | </td> | 
|  | <td> | 
|  | output: | 
|  | \verbinclude Tutorial_commainit_02.out | 
|  | </td> | 
|  | </tr> | 
|  |  | 
|  | <tr class="alt"><td>Runtime info</td> | 
|  | <td>\code | 
|  | vector.size(); | 
|  |  | 
|  | vector.innerStride(); | 
|  | vector.data(); | 
|  | \endcode</td><td>\code | 
|  | matrix.rows();          matrix.cols(); | 
|  | matrix.innerSize();     matrix.outerSize(); | 
|  | matrix.innerStride();   matrix.outerStride(); | 
|  | matrix.data(); | 
|  | \endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr> | 
|  | <tr><td>Compile-time info</td> | 
|  | <td colspan="2">\code | 
|  | ObjectType::Scalar              ObjectType::RowsAtCompileTime | 
|  | ObjectType::RealScalar          ObjectType::ColsAtCompileTime | 
|  | ObjectType::Index               ObjectType::SizeAtCompileTime | 
|  | \endcode</td><td></td></tr> | 
|  | <tr class="alt"><td>Resizing</td> | 
|  | <td>\code | 
|  | vector.resize(size); | 
|  |  | 
|  |  | 
|  | vector.resizeLike(other_vector); | 
|  | vector.conservativeResize(size); | 
|  | \endcode</td><td>\code | 
|  | matrix.resize(nb_rows, nb_cols); | 
|  | matrix.resize(Eigen::NoChange, nb_cols); | 
|  | matrix.resize(nb_rows, Eigen::NoChange); | 
|  | matrix.resizeLike(other_matrix); | 
|  | matrix.conservativeResize(nb_rows, nb_cols); | 
|  | \endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr> | 
|  |  | 
|  | <tr><td>Coeff access with \n range checking</td> | 
|  | <td>\code | 
|  | vector(i)     vector.x() | 
|  | vector[i]     vector.y() | 
|  | vector.z() | 
|  | vector.w() | 
|  | \endcode</td><td>\code | 
|  | matrix(i,j) | 
|  | \endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr> | 
|  |  | 
|  | <tr class="alt"><td>Coeff access without \n range checking</td> | 
|  | <td>\code | 
|  | vector.coeff(i) | 
|  | vector.coeffRef(i) | 
|  | \endcode</td><td>\code | 
|  | matrix.coeff(i,j) | 
|  | matrix.coeffRef(i,j) | 
|  | \endcode</td><td></td></tr> | 
|  |  | 
|  | <tr><td>Assignment/copy</td> | 
|  | <td colspan="2">\code | 
|  | object = expression; | 
|  | object_of_float = expression_of_double.cast<float>(); | 
|  | \endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr> | 
|  |  | 
|  | </table> | 
|  |  | 
|  | \subsection QuickRef_PredefMat Predefined Matrices | 
|  |  | 
|  | <table class="manual"> | 
|  | <tr> | 
|  | <th>Fixed-size matrix or vector</th> | 
|  | <th>Dynamic-size matrix</th> | 
|  | <th>Dynamic-size vector</th> | 
|  | </tr> | 
|  | <tr style="border-bottom-style: none;"> | 
|  | <td> | 
|  | \code | 
|  | typedef {Matrix3f|Array33f} FixedXD; | 
|  | FixedXD x; | 
|  |  | 
|  | x = FixedXD::Zero(); | 
|  | x = FixedXD::Ones(); | 
|  | x = FixedXD::Constant(value); | 
|  | x = FixedXD::Random(); | 
|  | x = FixedXD::LinSpaced(size, low, high); | 
|  |  | 
|  | x.setZero(); | 
|  | x.setOnes(); | 
|  | x.setConstant(value); | 
|  | x.setRandom(); | 
|  | x.setLinSpaced(size, low, high); | 
|  | \endcode | 
|  | </td> | 
|  | <td> | 
|  | \code | 
|  | typedef {MatrixXf|ArrayXXf} Dynamic2D; | 
|  | Dynamic2D x; | 
|  |  | 
|  | x = Dynamic2D::Zero(rows, cols); | 
|  | x = Dynamic2D::Ones(rows, cols); | 
|  | x = Dynamic2D::Constant(rows, cols, value); | 
|  | x = Dynamic2D::Random(rows, cols); | 
|  | N/A | 
|  |  | 
|  | x.setZero(rows, cols); | 
|  | x.setOnes(rows, cols); | 
|  | x.setConstant(rows, cols, value); | 
|  | x.setRandom(rows, cols); | 
|  | N/A | 
|  | \endcode | 
|  | </td> | 
|  | <td> | 
|  | \code | 
|  | typedef {VectorXf|ArrayXf} Dynamic1D; | 
|  | Dynamic1D x; | 
|  |  | 
|  | x = Dynamic1D::Zero(size); | 
|  | x = Dynamic1D::Ones(size); | 
|  | x = Dynamic1D::Constant(size, value); | 
|  | x = Dynamic1D::Random(size); | 
|  | x = Dynamic1D::LinSpaced(size, low, high); | 
|  |  | 
|  | x.setZero(size); | 
|  | x.setOnes(size); | 
|  | x.setConstant(size, value); | 
|  | x.setRandom(size); | 
|  | x.setLinSpaced(size, low, high); | 
|  | \endcode | 
|  | </td> | 
|  | </tr> | 
|  |  | 
|  | <tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr> | 
|  | <tr style="border-bottom-style: none;"> | 
|  | <td> | 
|  | \code | 
|  | x = FixedXD::Identity(); | 
|  | x.setIdentity(); | 
|  |  | 
|  | Vector3f::UnitX() // 1 0 0 | 
|  | Vector3f::UnitY() // 0 1 0 | 
|  | Vector3f::UnitZ() // 0 0 1 | 
|  | Vector4f::Unit(i) | 
|  | x.setUnit(i); | 
|  | \endcode | 
|  | </td> | 
|  | <td> | 
|  | \code | 
|  | x = Dynamic2D::Identity(rows, cols); | 
|  | x.setIdentity(rows, cols); | 
|  |  | 
|  |  | 
|  |  | 
|  | N/A | 
|  | \endcode | 
|  | </td> | 
|  | <td>\code | 
|  | N/A | 
|  |  | 
|  |  | 
|  | VectorXf::Unit(size,i) | 
|  | x.setUnit(size,i); | 
|  | VectorXf::Unit(4,1) == Vector4f(0,1,0,0) | 
|  | == Vector4f::UnitY() | 
|  | \endcode | 
|  | </td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  | Note that it is allowed to call any of the \c set* functions to a dynamic-sized vector or matrix without passing new sizes. | 
|  | For instance: | 
|  | \code | 
|  | MatrixXi M(3,3); | 
|  | M.setIdentity(); | 
|  | \endcode | 
|  |  | 
|  | \subsection QuickRef_Map Mapping external arrays | 
|  |  | 
|  | <table class="manual"> | 
|  | <tr> | 
|  | <td>Contiguous \n memory</td> | 
|  | <td>\code | 
|  | float data[] = {1,2,3,4}; | 
|  | Map<Vector3f> v1(data);       // uses v1 as a Vector3f object | 
|  | Map<ArrayXf>  v2(data,3);     // uses v2 as a ArrayXf object | 
|  | Map<Array22f> m1(data);       // uses m1 as a Array22f object | 
|  | Map<MatrixXf> m2(data,2,2);   // uses m2 as a MatrixXf object | 
|  | \endcode</td> | 
|  | </tr> | 
|  | <tr> | 
|  | <td>Typical usage \n of strides</td> | 
|  | <td>\code | 
|  | float data[] = {1,2,3,4,5,6,7,8,9}; | 
|  | Map<VectorXf,0,InnerStride<2> >  v1(data,3);                      // = [1,3,5] | 
|  | Map<VectorXf,0,InnerStride<> >   v2(data,3,InnerStride<>(3));     // = [1,4,7] | 
|  | Map<MatrixXf,0,OuterStride<3> >  m2(data,2,3);                    // both lines     |1,4,7| | 
|  | Map<MatrixXf,0,OuterStride<> >   m1(data,2,3,OuterStride<>(3));   // are equal to:  |2,5,8| | 
|  | \endcode</td> | 
|  | </tr> | 
|  | </table> | 
|  |  | 
|  |  | 
|  | <a href="#" class="top">top</a> | 
|  | \section QuickRef_ArithmeticOperators Arithmetic Operators | 
|  |  | 
|  | <table class="manual"> | 
|  | <tr><td> | 
|  | add \n subtract</td><td>\code | 
|  | mat3 = mat1 + mat2;           mat3 += mat1; | 
|  | mat3 = mat1 - mat2;           mat3 -= mat1;\endcode | 
|  | </td></tr> | 
|  | <tr class="alt"><td> | 
|  | scalar product</td><td>\code | 
|  | mat3 = mat1 * s1;             mat3 *= s1;           mat3 = s1 * mat1; | 
|  | mat3 = mat1 / s1;             mat3 /= s1;\endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | matrix/vector \n products \matrixworld</td><td>\code | 
|  | col2 = mat1 * col1; | 
|  | row2 = row1 * mat1;           row1 *= mat1; | 
|  | mat3 = mat1 * mat2;           mat3 *= mat1; \endcode | 
|  | </td></tr> | 
|  | <tr class="alt"><td> | 
|  | transposition \n adjoint \matrixworld</td><td>\code | 
|  | mat1 = mat2.transpose();      mat1.transposeInPlace(); | 
|  | mat1 = mat2.adjoint();        mat1.adjointInPlace(); | 
|  | \endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | \link MatrixBase::dot dot \endlink product \n inner product \matrixworld</td><td>\code | 
|  | scalar = vec1.dot(vec2); | 
|  | scalar = col1.adjoint() * col2; | 
|  | scalar = (col1.adjoint() * col2).value();\endcode | 
|  | </td></tr> | 
|  | <tr class="alt"><td> | 
|  | outer product \matrixworld</td><td>\code | 
|  | mat = col1 * col2.transpose();\endcode | 
|  | </td></tr> | 
|  |  | 
|  | <tr><td> | 
|  | \link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code | 
|  | scalar = vec1.norm();         scalar = vec1.squaredNorm() | 
|  | vec2 = vec1.normalized();     vec1.normalize(); // inplace \endcode | 
|  | </td></tr> | 
|  |  | 
|  | <tr class="alt"><td> | 
|  | \link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code | 
|  | #include <Eigen/Geometry> | 
|  | vec3 = vec1.cross(vec2);\endcode</td></tr> | 
|  | </table> | 
|  |  | 
|  | <a href="#" class="top">top</a> | 
|  | \section QuickRef_Coeffwise Coefficient-wise \& Array operators | 
|  |  | 
|  | In addition to the aforementioned operators, Eigen supports numerous coefficient-wise operator and functions. | 
|  | Most of them unambiguously makes sense in array-world\arrayworld. The following operators are readily available for arrays, | 
|  | or available through .array() for vectors and matrices: | 
|  |  | 
|  | <table class="manual"> | 
|  | <tr><td>Arithmetic operators</td><td>\code | 
|  | array1 * array2     array1 / array2     array1 *= array2    array1 /= array2 | 
|  | array1 + scalar     array1 - scalar     array1 += scalar    array1 -= scalar | 
|  | \endcode</td></tr> | 
|  | <tr><td>Comparisons</td><td>\code | 
|  | array1 < array2     array1 > array2     array1 < scalar     array1 > scalar | 
|  | array1 <= array2    array1 >= array2    array1 <= scalar    array1 >= scalar | 
|  | array1 == array2    array1 != array2    array1 == scalar    array1 != scalar | 
|  | array1.min(array2)  array1.max(array2)  array1.min(scalar)  array1.max(scalar) | 
|  | \endcode</td></tr> | 
|  | <tr><td>Trigo, power, and \n misc functions \n and the STL-like variants</td><td>\code | 
|  | array1.abs2() | 
|  | array1.abs()                  abs(array1) | 
|  | array1.sqrt()                 sqrt(array1) | 
|  | array1.log()                  log(array1) | 
|  | array1.log10()                log10(array1) | 
|  | array1.exp()                  exp(array1) | 
|  | array1.pow(array2)            pow(array1,array2) | 
|  | array1.pow(scalar)            pow(array1,scalar) | 
|  | pow(scalar,array2) | 
|  | array1.square() | 
|  | array1.cube() | 
|  | array1.inverse() | 
|  |  | 
|  | array1.sin()                  sin(array1) | 
|  | array1.cos()                  cos(array1) | 
|  | array1.tan()                  tan(array1) | 
|  | array1.asin()                 asin(array1) | 
|  | array1.acos()                 acos(array1) | 
|  | array1.atan()                 atan(array1) | 
|  | array1.sinh()                 sinh(array1) | 
|  | array1.cosh()                 cosh(array1) | 
|  | array1.tanh()                 tanh(array1) | 
|  | array1.arg()                  arg(array1) | 
|  |  | 
|  | array1.floor()                floor(array1) | 
|  | array1.ceil()                 ceil(array1) | 
|  | array1.round()                round(aray1) | 
|  |  | 
|  | array1.isFinite()             isfinite(array1) | 
|  | array1.isInf()                isinf(array1) | 
|  | array1.isNaN()                isnan(array1) | 
|  | \endcode | 
|  | </td></tr> | 
|  | </table> | 
|  |  | 
|  |  | 
|  | The following coefficient-wise operators are available for all kind of expressions (matrices, vectors, and arrays), and for both real or complex scalar types: | 
|  |  | 
|  | <table class="manual"> | 
|  | <tr><th>Eigen's API</th><th>STL-like APIs\arrayworld </th><th>Comments</th></tr> | 
|  | <tr><td>\code | 
|  | mat1.real() | 
|  | mat1.imag() | 
|  | mat1.conjugate() | 
|  | \endcode | 
|  | </td><td>\code | 
|  | real(array1) | 
|  | imag(array1) | 
|  | conj(array1) | 
|  | \endcode | 
|  | </td><td> | 
|  | \code | 
|  | // read-write, no-op for real expressions | 
|  | // read-only for real, read-write for complexes | 
|  | // no-op for real expressions | 
|  | \endcode | 
|  | </td></tr> | 
|  | </table> | 
|  |  | 
|  | Some coefficient-wise operators are readily available for for matrices and vectors through the following cwise* methods: | 
|  | <table class="manual"> | 
|  | <tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr> | 
|  | <tr><td>\code | 
|  | mat1.cwiseMin(mat2)         mat1.cwiseMin(scalar) | 
|  | mat1.cwiseMax(mat2)         mat1.cwiseMax(scalar) | 
|  | mat1.cwiseAbs2() | 
|  | mat1.cwiseAbs() | 
|  | mat1.cwiseSqrt() | 
|  | mat1.cwiseInverse() | 
|  | mat1.cwiseProduct(mat2) | 
|  | mat1.cwiseQuotient(mat2) | 
|  | mat1.cwiseEqual(mat2)       mat1.cwiseEqual(scalar) | 
|  | mat1.cwiseNotEqual(mat2) | 
|  | \endcode | 
|  | </td><td>\code | 
|  | mat1.array().min(mat2.array())    mat1.array().min(scalar) | 
|  | mat1.array().max(mat2.array())    mat1.array().max(scalar) | 
|  | mat1.array().abs2() | 
|  | mat1.array().abs() | 
|  | mat1.array().sqrt() | 
|  | mat1.array().inverse() | 
|  | mat1.array() * mat2.array() | 
|  | mat1.array() / mat2.array() | 
|  | mat1.array() == mat2.array()      mat1.array() == scalar | 
|  | mat1.array() != mat2.array() | 
|  | \endcode</td></tr> | 
|  | </table> | 
|  | The main difference between the two API is that the one based on cwise* methods returns an expression in the matrix world, | 
|  | while the second one (based on .array()) returns an array expression. | 
|  | Recall that .array() has no cost, it only changes the available API and interpretation of the data. | 
|  |  | 
|  | It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with <a href="http://en.cppreference.com/w/cpp/utility/functional/ptr_fun">std::ptr_fun</a> (c++03, deprecated or removed in newer C++ versions), <a href="http://en.cppreference.com/w/cpp/utility/functional/ref">std::ref</a> (c++11), or <a href="http://en.cppreference.com/w/cpp/language/lambda">lambdas</a> (c++11): | 
|  | \code | 
|  | mat1.unaryExpr(std::ptr_fun(foo)); | 
|  | mat1.unaryExpr(std::ref(foo)); | 
|  | mat1.unaryExpr([](double x) { return foo(x); }); | 
|  | \endcode | 
|  |  | 
|  | Please note that it's not possible to pass a raw function pointer to \c unaryExpr, so please warp it as shown above. | 
|  |  | 
|  | <a href="#" class="top">top</a> | 
|  | \section QuickRef_Reductions Reductions | 
|  |  | 
|  | Eigen provides several reduction methods such as: | 
|  | \link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink, | 
|  | \link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink, | 
|  | \link MatrixBase::trace() trace() \endlink \matrixworld, | 
|  | \link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld, | 
|  | \link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink. | 
|  | All reduction operations can be done matrix-wise, | 
|  | \link DenseBase::colwise() column-wise \endlink or | 
|  | \link DenseBase::rowwise() row-wise \endlink. Usage example: | 
|  | <table class="manual"> | 
|  | <tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code | 
|  | 5 3 1 | 
|  | mat = 2 7 8 | 
|  | 9 4 6 \endcode | 
|  | </td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr> | 
|  | <tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr> | 
|  | <tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code | 
|  | 1 | 
|  | 2 | 
|  | 4 | 
|  | \endcode</td></tr> | 
|  | </table> | 
|  |  | 
|  | Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink: | 
|  | \code | 
|  | int i, j; | 
|  | s = vector.minCoeff(&i);        // s == vector[i] | 
|  | s = matrix.maxCoeff(&i, &j);    // s == matrix(i,j) | 
|  | \endcode | 
|  | Typical use cases of all() and any(): | 
|  | \code | 
|  | if((array1 > 0).all()) ...      // if all coefficients of array1 are greater than 0 ... | 
|  | if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ... | 
|  | \endcode | 
|  |  | 
|  |  | 
|  | <a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices | 
|  |  | 
|  | <div class="warningbox"> | 
|  | <strong>PLEASE HELP US IMPROVING THIS SECTION.</strong> | 
|  | %Eigen 3.4 supports a much improved API for sub-matrices, including, | 
|  | slicing and indexing from arrays: \ref TutorialSlicingIndexing | 
|  | </div> | 
|  |  | 
|  | Read-write access to a \link DenseBase::col(Index) column \endlink | 
|  | or a \link DenseBase::row(Index) row \endlink of a matrix (or array): | 
|  | \code | 
|  | mat1.row(i) = mat2.col(j); | 
|  | mat1.col(j1).swap(mat1.col(j2)); | 
|  | \endcode | 
|  |  | 
|  | Read-write access to sub-vectors: | 
|  | <table class="manual"> | 
|  | <tr> | 
|  | <th>Default versions</th> | 
|  | <th>Optimized versions when the size \n is known at compile time</th></tr> | 
|  | <th></th> | 
|  |  | 
|  | <tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr> | 
|  | <tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr> | 
|  | <tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td> | 
|  | <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr> | 
|  | <tr class="alt"><td colspan="3"> | 
|  |  | 
|  | Read-write access to sub-matrices:</td></tr> | 
|  | <tr> | 
|  | <td>\code mat1.block(i,j,rows,cols)\endcode | 
|  | \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td> | 
|  | <td>\code mat1.block<rows,cols>(i,j)\endcode | 
|  | \link DenseBase::block(Index,Index) (more) \endlink</td> | 
|  | <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr> | 
|  | <tr><td>\code | 
|  | mat1.topLeftCorner(rows,cols) | 
|  | mat1.topRightCorner(rows,cols) | 
|  | mat1.bottomLeftCorner(rows,cols) | 
|  | mat1.bottomRightCorner(rows,cols)\endcode | 
|  | <td>\code | 
|  | mat1.topLeftCorner<rows,cols>() | 
|  | mat1.topRightCorner<rows,cols>() | 
|  | mat1.bottomLeftCorner<rows,cols>() | 
|  | mat1.bottomRightCorner<rows,cols>()\endcode | 
|  | <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr> | 
|  | <tr><td>\code | 
|  | mat1.topRows(rows) | 
|  | mat1.bottomRows(rows) | 
|  | mat1.leftCols(cols) | 
|  | mat1.rightCols(cols)\endcode | 
|  | <td>\code | 
|  | mat1.topRows<rows>() | 
|  | mat1.bottomRows<rows>() | 
|  | mat1.leftCols<cols>() | 
|  | mat1.rightCols<cols>()\endcode | 
|  | <td>specialized versions of block() \n when the block fit two corners</td></tr> | 
|  | </table> | 
|  |  | 
|  |  | 
|  |  | 
|  | <a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations | 
|  |  | 
|  | <div class="warningbox"> | 
|  | <strong>PLEASE HELP US IMPROVING THIS SECTION.</strong> | 
|  | %Eigen 3.4 supports a new API for reshaping: \ref TutorialReshape | 
|  | </div> | 
|  |  | 
|  | \subsection QuickRef_Reverse Reverse | 
|  | Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()). | 
|  | \code | 
|  | vec.reverse()           mat.colwise().reverse()   mat.rowwise().reverse() | 
|  | vec.reverseInPlace() | 
|  | \endcode | 
|  |  | 
|  | \subsection QuickRef_Replicate Replicate | 
|  | Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate()) | 
|  | \code | 
|  | vec.replicate(times)                                          vec.replicate<Times> | 
|  | mat.replicate(vertical_times, horizontal_times)               mat.replicate<VerticalTimes, HorizontalTimes>() | 
|  | mat.colwise().replicate(vertical_times, horizontal_times)     mat.colwise().replicate<VerticalTimes, HorizontalTimes>() | 
|  | mat.rowwise().replicate(vertical_times, horizontal_times)     mat.rowwise().replicate<VerticalTimes, HorizontalTimes>() | 
|  | \endcode | 
|  |  | 
|  |  | 
|  | <a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices | 
|  | (matrix world \matrixworld) | 
|  |  | 
|  | \subsection QuickRef_Diagonal Diagonal matrices | 
|  |  | 
|  | <table class="example"> | 
|  | <tr><th>Operation</th><th>Code</th></tr> | 
|  | <tr><td> | 
|  | view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code | 
|  | mat1 = vec1.asDiagonal();\endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | Declare a diagonal matrix</td><td>\code | 
|  | DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); | 
|  | diag1.diagonal() = vector;\endcode | 
|  | </td></tr> | 
|  | <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td> | 
|  | <td>\code | 
|  | vec1 = mat1.diagonal();        mat1.diagonal() = vec1;      // main diagonal | 
|  | vec1 = mat1.diagonal(+n);      mat1.diagonal(+n) = vec1;    // n-th super diagonal | 
|  | vec1 = mat1.diagonal(-n);      mat1.diagonal(-n) = vec1;    // n-th sub diagonal | 
|  | vec1 = mat1.diagonal<1>();     mat1.diagonal<1>() = vec1;   // first super diagonal | 
|  | vec1 = mat1.diagonal<-2>();    mat1.diagonal<-2>() = vec1;  // second sub diagonal | 
|  | \endcode</td> | 
|  | </tr> | 
|  |  | 
|  | <tr><td>Optimized products and inverse</td> | 
|  | <td>\code | 
|  | mat3  = scalar * diag1 * mat1; | 
|  | mat3 += scalar * mat1 * vec1.asDiagonal(); | 
|  | mat3 = vec1.asDiagonal().inverse() * mat1 | 
|  | mat3 = mat1 * diag1.inverse() | 
|  | \endcode</td> | 
|  | </tr> | 
|  |  | 
|  | </table> | 
|  |  | 
|  | \subsection QuickRef_TriangularView Triangular views | 
|  |  | 
|  | TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information. | 
|  |  | 
|  | \note The .triangularView() template member function requires the \c template keyword if it is used on an | 
|  | object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. | 
|  |  | 
|  | <table class="example"> | 
|  | <tr><th>Operation</th><th>Code</th></tr> | 
|  | <tr><td> | 
|  | Reference to a triangular with optional \n | 
|  | unit or null diagonal (read/write): | 
|  | </td><td>\code | 
|  | m.triangularView<Xxx>() | 
|  | \endcode \n | 
|  | \c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | Writing to a specific triangular part:\n (only the referenced triangular part is evaluated) | 
|  | </td><td>\code | 
|  | m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | Conversion to a dense matrix setting the opposite triangular part to zero: | 
|  | </td><td>\code | 
|  | m2 = m1.triangularView<Eigen::UnitUpper>()\endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | Products: | 
|  | </td><td>\code | 
|  | m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2 | 
|  | m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | Solving linear equations:\n | 
|  | \f$ M_2 := L_1^{-1} M_2 \f$ \n | 
|  | \f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n | 
|  | \f$ M_4 := M_4 U_1^{-1} \f$ | 
|  | </td><td>\n \code | 
|  | L1.triangularView<Eigen::UnitLower>().solveInPlace(M2) | 
|  | L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3) | 
|  | U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode | 
|  | </td></tr> | 
|  | </table> | 
|  |  | 
|  | \subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views | 
|  |  | 
|  | Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint | 
|  | matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be | 
|  | used to store other information. | 
|  |  | 
|  | \note The .selfadjointView() template member function requires the \c template keyword if it is used on an | 
|  | object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. | 
|  |  | 
|  | <table class="example"> | 
|  | <tr><th>Operation</th><th>Code</th></tr> | 
|  | <tr><td> | 
|  | Conversion to a dense matrix: | 
|  | </td><td>\code | 
|  | m2 = m.selfadjointView<Eigen::Lower>();\endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | Product with another general matrix or vector: | 
|  | </td><td>\code | 
|  | m3  = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3; | 
|  | m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | Rank 1 and rank K update: \n | 
|  | \f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n | 
|  | \f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$ | 
|  | </td><td>\n \code | 
|  | M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1); | 
|  | M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$) | 
|  | </td><td>\code | 
|  | M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s); | 
|  | \endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$) | 
|  | </td><td>\code | 
|  | // via a standard Cholesky factorization | 
|  | m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2); | 
|  | // via a Cholesky factorization with pivoting | 
|  | m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2); | 
|  | \endcode | 
|  | </td></tr> | 
|  | </table> | 
|  |  | 
|  | */ | 
|  |  | 
|  | /* | 
|  | <table class="tutorial_code"> | 
|  | <tr><td> | 
|  | \link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code | 
|  | mat1 = vec1.asDiagonal();\endcode | 
|  | </td></tr> | 
|  | <tr><td> | 
|  | Declare a diagonal matrix</td><td>\code | 
|  | DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); | 
|  | diag1.diagonal() = vector;\endcode | 
|  | </td></tr> | 
|  | <tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td> | 
|  | <td>\code | 
|  | vec1 = mat1.diagonal();            mat1.diagonal() = vec1;      // main diagonal | 
|  | vec1 = mat1.diagonal(+n);          mat1.diagonal(+n) = vec1;    // n-th super diagonal | 
|  | vec1 = mat1.diagonal(-n);          mat1.diagonal(-n) = vec1;    // n-th sub diagonal | 
|  | vec1 = mat1.diagonal<1>();         mat1.diagonal<1>() = vec1;   // first super diagonal | 
|  | vec1 = mat1.diagonal<-2>();        mat1.diagonal<-2>() = vec1;  // second sub diagonal | 
|  | \endcode</td> | 
|  | </tr> | 
|  |  | 
|  | <tr><td>View on a triangular part of a matrix (read/write)</td> | 
|  | <td>\code | 
|  | mat2 = mat1.triangularView<Xxx>(); | 
|  | // Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower | 
|  | mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced | 
|  | \endcode</td></tr> | 
|  |  | 
|  | <tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td> | 
|  | <td>\code | 
|  | mat2 = mat1.selfadjointView<Xxx>();     // Xxx = Upper or Lower | 
|  | mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint();  // evaluated and write to the upper triangular part only | 
|  | \endcode</td></tr> | 
|  |  | 
|  | </table> | 
|  |  | 
|  | Optimized products: | 
|  | \code | 
|  | mat3 += scalar * vec1.asDiagonal() * mat1 | 
|  | mat3 += scalar * mat1 * vec1.asDiagonal() | 
|  | mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2 | 
|  | mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>() | 
|  | mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2 | 
|  | mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>() | 
|  | mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2); | 
|  | mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar); | 
|  | \endcode | 
|  |  | 
|  | Inverse products: (all are optimized) | 
|  | \code | 
|  | mat3 = vec1.asDiagonal().inverse() * mat1 | 
|  | mat3 = mat1 * diag1.inverse() | 
|  | mat1.triangularView<Xxx>().solveInPlace(mat2) | 
|  | mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2) | 
|  | mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2) | 
|  | \endcode | 
|  |  | 
|  | */ | 
|  | } |