|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <iostream> | 
|  |  | 
|  | using namespace std; | 
|  |  | 
|  | template<typename MatrixType> void reverse(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | // this test relies a lot on Random.h, and there's not much more that we can do | 
|  | // to test it, hence I consider that we will have tested Random.h | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), m2; | 
|  | VectorType v1 = VectorType::Random(rows); | 
|  |  | 
|  | MatrixType m1_r = m1.reverse(); | 
|  | // Verify that MatrixBase::reverse() works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Reverse<MatrixType> m1_rd(m1); | 
|  | // Verify that a Reverse default (in both directions) of an expression works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Reverse<MatrixType, BothDirections> m1_rb(m1); | 
|  | // Verify that a Reverse in both directions of an expression works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Reverse<MatrixType, Vertical> m1_rv(m1); | 
|  | // Verify that a Reverse in the vertical directions of an expression works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Reverse<MatrixType, Horizontal> m1_rh(m1); | 
|  | // Verify that a Reverse in the horizontal directions of an expression works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | VectorType v1_r = v1.reverse(); | 
|  | // Verify that a VectorType::reverse() of an expression works | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i)); | 
|  | } | 
|  |  | 
|  | MatrixType m1_cr = m1.colwise().reverse(); | 
|  | // Verify that PartialRedux::reverse() works (for colwise()) | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | MatrixType m1_rr = m1.rowwise().reverse(); | 
|  | // Verify that PartialRedux::reverse() works (for rowwise()) | 
|  | for ( int i = 0; i < rows; i++ ) { | 
|  | for ( int j = 0; j < cols; j++ ) { | 
|  | VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Scalar x = internal::random<Scalar>(); | 
|  |  | 
|  | Index r = internal::random<Index>(0, rows-1), | 
|  | c = internal::random<Index>(0, cols-1); | 
|  |  | 
|  | m1.reverse()(r, c) = x; | 
|  | VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c)); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.reverseInPlace(); | 
|  | VERIFY_IS_APPROX(m2,m1.reverse().eval()); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.col(0).reverseInPlace(); | 
|  | VERIFY_IS_APPROX(m2.col(0),m1.col(0).reverse().eval()); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.row(0).reverseInPlace(); | 
|  | VERIFY_IS_APPROX(m2.row(0),m1.row(0).reverse().eval()); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.rowwise().reverseInPlace(); | 
|  | VERIFY_IS_APPROX(m2,m1.rowwise().reverse().eval()); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.colwise().reverseInPlace(); | 
|  | VERIFY_IS_APPROX(m2,m1.colwise().reverse().eval()); | 
|  |  | 
|  | m1.colwise().reverse()(r, c) = x; | 
|  | VERIFY_IS_APPROX(x, m1(rows - 1 - r, c)); | 
|  |  | 
|  | m1.rowwise().reverse()(r, c) = x; | 
|  | VERIFY_IS_APPROX(x, m1(r, cols - 1 - c)); | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void array_reverse_extra() | 
|  | { | 
|  | Vector4f x; x << 1, 2, 3, 4; | 
|  | Vector4f y; y << 4, 3, 2, 1; | 
|  | VERIFY(x.reverse()[1] == 3); | 
|  | VERIFY(x.reverse() == y); | 
|  | } | 
|  |  | 
|  | // Simpler version of reverseInPlace leveraging a bug | 
|  | // in clang 6/7 with -O2 and AVX or AVX512 enabled. | 
|  | // This simpler version ensure that the clang bug is not simply hidden | 
|  | // through mis-inlining of reverseInPlace or other minor changes. | 
|  | template<typename MatrixType> | 
|  | EIGEN_DONT_INLINE | 
|  | void bug1684_job1(MatrixType& m1, MatrixType& m2) | 
|  | { | 
|  | m2 = m1; | 
|  | m2.col(0).swap(m2.col(3)); | 
|  | m2.col(1).swap(m2.col(2)); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | EIGEN_DONT_INLINE | 
|  | void bug1684_job2(MatrixType& m1, MatrixType& m2) | 
|  | { | 
|  | m2 = m1; // load m1/m2 in AVX registers | 
|  | m1.col(0) = m2.col(3); // perform 128 bits moves | 
|  | m1.col(1) = m2.col(2); | 
|  | m1.col(2) = m2.col(1); | 
|  | m1.col(3) = m2.col(0); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | EIGEN_DONT_INLINE | 
|  | void bug1684_job3(MatrixType& m1, MatrixType& m2) | 
|  | { | 
|  | m2 = m1; | 
|  | Vector4f tmp; | 
|  | tmp = m2.col(0); | 
|  | m2.col(0) = m2.col(3); | 
|  | m2.col(3) = tmp; | 
|  | tmp = m2.col(1); | 
|  | m2.col(1) = m2.col(2); | 
|  | m2.col(2) = tmp; | 
|  |  | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void bug1684() | 
|  | { | 
|  | Matrix4f m1 = Matrix4f::Random(); | 
|  | Matrix4f m2 = Matrix4f::Random(); | 
|  | bug1684_job1(m1,m2); | 
|  | VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval()); | 
|  | bug1684_job2(m1,m2); | 
|  | VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval()); | 
|  | // This one still fail after our swap's workaround, | 
|  | // but I expect users not to implement their own swap. | 
|  | // bug1684_job3(m1,m2); | 
|  | // VERIFY_IS_APPROX(m2, m1.rowwise().reverse().eval()); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(array_reverse) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( reverse(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( reverse(Matrix2f()) ); | 
|  | CALL_SUBTEST_3( reverse(Matrix4f()) ); | 
|  | CALL_SUBTEST_4( reverse(Matrix4d()) ); | 
|  | CALL_SUBTEST_5( reverse(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_6( reverse(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_7( reverse(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_8( reverse(Matrix<float, 100, 100>()) ); | 
|  | CALL_SUBTEST_9( reverse(Matrix<float,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_3( bug1684<0>() ); | 
|  | } | 
|  | CALL_SUBTEST_3( array_reverse_extra<0>() ); | 
|  | } |