| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_EIGENSOLVER_H | 
 | #define EIGEN_EIGENSOLVER_H | 
 |  | 
 | #include "./RealSchur.h" | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
 |  * | 
 |  * | 
 |  * \class EigenSolver | 
 |  * | 
 |  * \brief Computes eigenvalues and eigenvectors of general matrices | 
 |  * | 
 |  * \tparam MatrixType_ the type of the matrix of which we are computing the | 
 |  * eigendecomposition; this is expected to be an instantiation of the Matrix | 
 |  * class template. Currently, only real matrices are supported. | 
 |  * | 
 |  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars | 
 |  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.  If | 
 |  * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and | 
 |  * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = | 
 |  * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we | 
 |  * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition. | 
 |  * | 
 |  * The eigenvalues and eigenvectors of a matrix may be complex, even when the | 
 |  * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D | 
 |  * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the | 
 |  * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to | 
 |  * have blocks of the form | 
 |  * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f] | 
 |  * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal.  These | 
 |  * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call | 
 |  * this variant of the eigendecomposition the pseudo-eigendecomposition. | 
 |  * | 
 |  * Call the function compute() to compute the eigenvalues and eigenvectors of | 
 |  * a given matrix. Alternatively, you can use the | 
 |  * EigenSolver(const MatrixType&, bool) constructor which computes the | 
 |  * eigenvalues and eigenvectors at construction time. Once the eigenvalue and | 
 |  * eigenvectors are computed, they can be retrieved with the eigenvalues() and | 
 |  * eigenvectors() functions. The pseudoEigenvalueMatrix() and | 
 |  * pseudoEigenvectors() methods allow the construction of the | 
 |  * pseudo-eigendecomposition. | 
 |  * | 
 |  * The documentation for EigenSolver(const MatrixType&, bool) contains an | 
 |  * example of the typical use of this class. | 
 |  * | 
 |  * \note The implementation is adapted from | 
 |  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain). | 
 |  * Their code is based on EISPACK. | 
 |  * | 
 |  * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver | 
 |  */ | 
 | template <typename MatrixType_> | 
 | class EigenSolver { | 
 |  public: | 
 |   /** \brief Synonym for the template parameter \p MatrixType_. */ | 
 |   typedef MatrixType_ MatrixType; | 
 |  | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |     Options = internal::traits<MatrixType>::Options, | 
 |     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |   }; | 
 |  | 
 |   /** \brief Scalar type for matrices of type #MatrixType. */ | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Eigen::Index Index;  ///< \deprecated since Eigen 3.3 | 
 |  | 
 |   /** \brief Complex scalar type for #MatrixType. | 
 |    * | 
 |    * This is \c std::complex<Scalar> if #Scalar is real (e.g., | 
 |    * \c float or \c double) and just \c Scalar if #Scalar is | 
 |    * complex. | 
 |    */ | 
 |   typedef std::complex<RealScalar> ComplexScalar; | 
 |  | 
 |   /** \brief Type for vector of eigenvalues as returned by eigenvalues(). | 
 |    * | 
 |    * This is a column vector with entries of type #ComplexScalar. | 
 |    * The length of the vector is the size of #MatrixType. | 
 |    */ | 
 |   typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; | 
 |  | 
 |   /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). | 
 |    * | 
 |    * This is a square matrix with entries of type #ComplexScalar. | 
 |    * The size is the same as the size of #MatrixType. | 
 |    */ | 
 |   typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, | 
 |                  MaxColsAtCompileTime> | 
 |       EigenvectorsType; | 
 |  | 
 |   /** \brief Default constructor. | 
 |    * | 
 |    * The default constructor is useful in cases in which the user intends to | 
 |    * perform decompositions via EigenSolver::compute(const MatrixType&, bool). | 
 |    * | 
 |    * \sa compute() for an example. | 
 |    */ | 
 |   EigenSolver() | 
 |       : m_eivec(), m_eivalues(), m_isInitialized(false), m_eigenvectorsOk(false), m_realSchur(), m_matT(), m_tmp() {} | 
 |  | 
 |   /** \brief Default constructor with memory preallocation | 
 |    * | 
 |    * Like the default constructor but with preallocation of the internal data | 
 |    * according to the specified problem \a size. | 
 |    * \sa EigenSolver() | 
 |    */ | 
 |   explicit EigenSolver(Index size) | 
 |       : m_eivec(size, size), | 
 |         m_eivalues(size), | 
 |         m_isInitialized(false), | 
 |         m_eigenvectorsOk(false), | 
 |         m_realSchur(size), | 
 |         m_matT(size, size), | 
 |         m_tmp(size) {} | 
 |  | 
 |   /** \brief Constructor; computes eigendecomposition of given matrix. | 
 |    * | 
 |    * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed. | 
 |    * \param[in]  computeEigenvectors  If true, both the eigenvectors and the | 
 |    *    eigenvalues are computed; if false, only the eigenvalues are | 
 |    *    computed. | 
 |    * | 
 |    * This constructor calls compute() to compute the eigenvalues | 
 |    * and eigenvectors. | 
 |    * | 
 |    * Example: \include EigenSolver_EigenSolver_MatrixType.cpp | 
 |    * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out | 
 |    * | 
 |    * \sa compute() | 
 |    */ | 
 |   template <typename InputType> | 
 |   explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true) | 
 |       : m_eivec(matrix.rows(), matrix.cols()), | 
 |         m_eivalues(matrix.cols()), | 
 |         m_isInitialized(false), | 
 |         m_eigenvectorsOk(false), | 
 |         m_realSchur(matrix.cols()), | 
 |         m_matT(matrix.rows(), matrix.cols()), | 
 |         m_tmp(matrix.cols()) { | 
 |     compute(matrix.derived(), computeEigenvectors); | 
 |   } | 
 |  | 
 |   /** \brief Returns the eigenvectors of given matrix. | 
 |    * | 
 |    * \returns  %Matrix whose columns are the (possibly complex) eigenvectors. | 
 |    * | 
 |    * \pre Either the constructor | 
 |    * EigenSolver(const MatrixType&,bool) or the member function | 
 |    * compute(const MatrixType&, bool) has been called before, and | 
 |    * \p computeEigenvectors was set to true (the default). | 
 |    * | 
 |    * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding | 
 |    * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The | 
 |    * eigenvectors are normalized to have (Euclidean) norm equal to one. The | 
 |    * matrix returned by this function is the matrix \f$ V \f$ in the | 
 |    * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists. | 
 |    * | 
 |    * Example: \include EigenSolver_eigenvectors.cpp | 
 |    * Output: \verbinclude EigenSolver_eigenvectors.out | 
 |    * | 
 |    * \sa eigenvalues(), pseudoEigenvectors() | 
 |    */ | 
 |   EigenvectorsType eigenvectors() const; | 
 |  | 
 |   /** \brief Returns the pseudo-eigenvectors of given matrix. | 
 |    * | 
 |    * \returns  Const reference to matrix whose columns are the pseudo-eigenvectors. | 
 |    * | 
 |    * \pre Either the constructor | 
 |    * EigenSolver(const MatrixType&,bool) or the member function | 
 |    * compute(const MatrixType&, bool) has been called before, and | 
 |    * \p computeEigenvectors was set to true (the default). | 
 |    * | 
 |    * The real matrix \f$ V \f$ returned by this function and the | 
 |    * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix() | 
 |    * satisfy \f$ AV = VD \f$. | 
 |    * | 
 |    * Example: \include EigenSolver_pseudoEigenvectors.cpp | 
 |    * Output: \verbinclude EigenSolver_pseudoEigenvectors.out | 
 |    * | 
 |    * \sa pseudoEigenvalueMatrix(), eigenvectors() | 
 |    */ | 
 |   const MatrixType& pseudoEigenvectors() const { | 
 |     eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
 |     eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
 |     return m_eivec; | 
 |   } | 
 |  | 
 |   /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition. | 
 |    * | 
 |    * \returns  A block-diagonal matrix. | 
 |    * | 
 |    * \pre Either the constructor | 
 |    * EigenSolver(const MatrixType&,bool) or the member function | 
 |    * compute(const MatrixType&, bool) has been called before. | 
 |    * | 
 |    * The matrix \f$ D \f$ returned by this function is real and | 
 |    * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2 | 
 |    * blocks of the form | 
 |    * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$. | 
 |    * These blocks are not sorted in any particular order. | 
 |    * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by | 
 |    * pseudoEigenvectors() satisfy \f$ AV = VD \f$. | 
 |    * | 
 |    * \sa pseudoEigenvectors() for an example, eigenvalues() | 
 |    */ | 
 |   MatrixType pseudoEigenvalueMatrix() const; | 
 |  | 
 |   /** \brief Returns the eigenvalues of given matrix. | 
 |    * | 
 |    * \returns A const reference to the column vector containing the eigenvalues. | 
 |    * | 
 |    * \pre Either the constructor | 
 |    * EigenSolver(const MatrixType&,bool) or the member function | 
 |    * compute(const MatrixType&, bool) has been called before. | 
 |    * | 
 |    * The eigenvalues are repeated according to their algebraic multiplicity, | 
 |    * so there are as many eigenvalues as rows in the matrix. The eigenvalues | 
 |    * are not sorted in any particular order. | 
 |    * | 
 |    * Example: \include EigenSolver_eigenvalues.cpp | 
 |    * Output: \verbinclude EigenSolver_eigenvalues.out | 
 |    * | 
 |    * \sa eigenvectors(), pseudoEigenvalueMatrix(), | 
 |    *     MatrixBase::eigenvalues() | 
 |    */ | 
 |   const EigenvalueType& eigenvalues() const { | 
 |     eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
 |     return m_eivalues; | 
 |   } | 
 |  | 
 |   /** \brief Computes eigendecomposition of given matrix. | 
 |    * | 
 |    * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed. | 
 |    * \param[in]  computeEigenvectors  If true, both the eigenvectors and the | 
 |    *    eigenvalues are computed; if false, only the eigenvalues are | 
 |    *    computed. | 
 |    * \returns    Reference to \c *this | 
 |    * | 
 |    * This function computes the eigenvalues of the real matrix \p matrix. | 
 |    * The eigenvalues() function can be used to retrieve them.  If | 
 |    * \p computeEigenvectors is true, then the eigenvectors are also computed | 
 |    * and can be retrieved by calling eigenvectors(). | 
 |    * | 
 |    * The matrix is first reduced to real Schur form using the RealSchur | 
 |    * class. The Schur decomposition is then used to compute the eigenvalues | 
 |    * and eigenvectors. | 
 |    * | 
 |    * The cost of the computation is dominated by the cost of the | 
 |    * Schur decomposition, which is very approximately \f$ 25n^3 \f$ | 
 |    * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors | 
 |    * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false. | 
 |    * | 
 |    * This method reuses of the allocated data in the EigenSolver object. | 
 |    * | 
 |    * Example: \include EigenSolver_compute.cpp | 
 |    * Output: \verbinclude EigenSolver_compute.out | 
 |    */ | 
 |   template <typename InputType> | 
 |   EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true); | 
 |  | 
 |   /** \returns NumericalIssue if the input contains INF or NaN values or overflow occurred. Returns Success otherwise. | 
 |    */ | 
 |   ComputationInfo info() const { | 
 |     eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 |   /** \brief Sets the maximum number of iterations allowed. */ | 
 |   EigenSolver& setMaxIterations(Index maxIters) { | 
 |     m_realSchur.setMaxIterations(maxIters); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /** \brief Returns the maximum number of iterations. */ | 
 |   Index getMaxIterations() { return m_realSchur.getMaxIterations(); } | 
 |  | 
 |  private: | 
 |   void doComputeEigenvectors(); | 
 |  | 
 |  protected: | 
 |   static void check_template_parameters() { | 
 |     EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
 |     EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); | 
 |   } | 
 |  | 
 |   MatrixType m_eivec; | 
 |   EigenvalueType m_eivalues; | 
 |   bool m_isInitialized; | 
 |   bool m_eigenvectorsOk; | 
 |   ComputationInfo m_info; | 
 |   RealSchur<MatrixType> m_realSchur; | 
 |   MatrixType m_matT; | 
 |  | 
 |   typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; | 
 |   ColumnVectorType m_tmp; | 
 | }; | 
 |  | 
 | template <typename MatrixType> | 
 | MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const { | 
 |   eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
 |   const RealScalar precision = RealScalar(2) * NumTraits<RealScalar>::epsilon(); | 
 |   const Index n = m_eivalues.rows(); | 
 |   MatrixType matD = MatrixType::Zero(n, n); | 
 |   Index i = 0; | 
 |   for (; i < n - 1; ++i) { | 
 |     RealScalar real = numext::real(m_eivalues.coeff(i)); | 
 |     RealScalar imag = numext::imag(m_eivalues.coeff(i)); | 
 |     matD.coeffRef(i, i) = real; | 
 |     if (!internal::isMuchSmallerThan(imag, real, precision)) { | 
 |       matD.coeffRef(i, i + 1) = imag; | 
 |       matD.coeffRef(i + 1, i) = -imag; | 
 |       matD.coeffRef(i + 1, i + 1) = real; | 
 |       ++i; | 
 |     } | 
 |   } | 
 |   if (i == n - 1) { | 
 |     matD.coeffRef(i, i) = numext::real(m_eivalues.coeff(i)); | 
 |   } | 
 |  | 
 |   return matD; | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const { | 
 |   eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
 |   eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
 |   const RealScalar precision = RealScalar(2) * NumTraits<RealScalar>::epsilon(); | 
 |   Index n = m_eivec.cols(); | 
 |   EigenvectorsType matV(n, n); | 
 |   for (Index j = 0; j < n; ++j) { | 
 |     if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || | 
 |         j + 1 == n) { | 
 |       // we have a real eigen value | 
 |       matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>(); | 
 |       matV.col(j).normalize(); | 
 |     } else { | 
 |       // we have a pair of complex eigen values | 
 |       for (Index i = 0; i < n; ++i) { | 
 |         matV.coeffRef(i, j) = ComplexScalar(m_eivec.coeff(i, j), m_eivec.coeff(i, j + 1)); | 
 |         matV.coeffRef(i, j + 1) = ComplexScalar(m_eivec.coeff(i, j), -m_eivec.coeff(i, j + 1)); | 
 |       } | 
 |       matV.col(j).normalize(); | 
 |       matV.col(j + 1).normalize(); | 
 |       ++j; | 
 |     } | 
 |   } | 
 |   return matV; | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | template <typename InputType> | 
 | EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, | 
 |                                                           bool computeEigenvectors) { | 
 |   check_template_parameters(); | 
 |  | 
 |   using numext::isfinite; | 
 |   using std::abs; | 
 |   using std::sqrt; | 
 |   eigen_assert(matrix.cols() == matrix.rows()); | 
 |  | 
 |   // Reduce to real Schur form. | 
 |   m_realSchur.compute(matrix.derived(), computeEigenvectors); | 
 |  | 
 |   m_info = m_realSchur.info(); | 
 |  | 
 |   if (m_info == Success) { | 
 |     m_matT = m_realSchur.matrixT(); | 
 |     if (computeEigenvectors) m_eivec = m_realSchur.matrixU(); | 
 |  | 
 |     // Compute eigenvalues from matT | 
 |     m_eivalues.resize(matrix.cols()); | 
 |     Index i = 0; | 
 |     while (i < matrix.cols()) { | 
 |       if (i == matrix.cols() - 1 || m_matT.coeff(i + 1, i) == Scalar(0)) { | 
 |         m_eivalues.coeffRef(i) = m_matT.coeff(i, i); | 
 |         if (!(isfinite)(m_eivalues.coeffRef(i))) { | 
 |           m_isInitialized = true; | 
 |           m_eigenvectorsOk = false; | 
 |           m_info = NumericalIssue; | 
 |           return *this; | 
 |         } | 
 |         ++i; | 
 |       } else { | 
 |         Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i + 1, i + 1)); | 
 |         Scalar z; | 
 |         // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1))); | 
 |         // without overflow | 
 |         { | 
 |           Scalar t0 = m_matT.coeff(i + 1, i); | 
 |           Scalar t1 = m_matT.coeff(i, i + 1); | 
 |           Scalar maxval = numext::maxi<Scalar>(abs(p), numext::maxi<Scalar>(abs(t0), abs(t1))); | 
 |           t0 /= maxval; | 
 |           t1 /= maxval; | 
 |           Scalar p0 = p / maxval; | 
 |           z = maxval * sqrt(abs(p0 * p0 + t0 * t1)); | 
 |         } | 
 |  | 
 |         m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i + 1, i + 1) + p, z); | 
 |         m_eivalues.coeffRef(i + 1) = ComplexScalar(m_matT.coeff(i + 1, i + 1) + p, -z); | 
 |         if (!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i + 1)))) { | 
 |           m_isInitialized = true; | 
 |           m_eigenvectorsOk = false; | 
 |           m_info = NumericalIssue; | 
 |           return *this; | 
 |         } | 
 |         i += 2; | 
 |       } | 
 |     } | 
 |  | 
 |     // Compute eigenvectors. | 
 |     if (computeEigenvectors) doComputeEigenvectors(); | 
 |   } | 
 |  | 
 |   m_isInitialized = true; | 
 |   m_eigenvectorsOk = computeEigenvectors; | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void EigenSolver<MatrixType>::doComputeEigenvectors() { | 
 |   using std::abs; | 
 |   const Index size = m_eivec.cols(); | 
 |   const Scalar eps = NumTraits<Scalar>::epsilon(); | 
 |  | 
 |   // inefficient! this is already computed in RealSchur | 
 |   Scalar norm(0); | 
 |   for (Index j = 0; j < size; ++j) { | 
 |     norm += m_matT.row(j).segment((std::max)(j - 1, Index(0)), size - (std::max)(j - 1, Index(0))).cwiseAbs().sum(); | 
 |   } | 
 |  | 
 |   // Backsubstitute to find vectors of upper triangular form | 
 |   if (norm == Scalar(0)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   for (Index n = size - 1; n >= 0; n--) { | 
 |     Scalar p = m_eivalues.coeff(n).real(); | 
 |     Scalar q = m_eivalues.coeff(n).imag(); | 
 |  | 
 |     // Scalar vector | 
 |     if (q == Scalar(0)) { | 
 |       Scalar lastr(0), lastw(0); | 
 |       Index l = n; | 
 |  | 
 |       m_matT.coeffRef(n, n) = Scalar(1); | 
 |       for (Index i = n - 1; i >= 0; i--) { | 
 |         Scalar w = m_matT.coeff(i, i) - p; | 
 |         Scalar r = m_matT.row(i).segment(l, n - l + 1).dot(m_matT.col(n).segment(l, n - l + 1)); | 
 |  | 
 |         if (m_eivalues.coeff(i).imag() < Scalar(0)) { | 
 |           lastw = w; | 
 |           lastr = r; | 
 |         } else { | 
 |           l = i; | 
 |           if (m_eivalues.coeff(i).imag() == Scalar(0)) { | 
 |             if (w != Scalar(0)) | 
 |               m_matT.coeffRef(i, n) = -r / w; | 
 |             else | 
 |               m_matT.coeffRef(i, n) = -r / (eps * norm); | 
 |           } else  // Solve real equations | 
 |           { | 
 |             Scalar x = m_matT.coeff(i, i + 1); | 
 |             Scalar y = m_matT.coeff(i + 1, i); | 
 |             Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + | 
 |                            m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); | 
 |             Scalar t = (x * lastr - lastw * r) / denom; | 
 |             m_matT.coeffRef(i, n) = t; | 
 |             if (abs(x) > abs(lastw)) | 
 |               m_matT.coeffRef(i + 1, n) = (-r - w * t) / x; | 
 |             else | 
 |               m_matT.coeffRef(i + 1, n) = (-lastr - y * t) / lastw; | 
 |           } | 
 |  | 
 |           // Overflow control | 
 |           Scalar t = abs(m_matT.coeff(i, n)); | 
 |           if ((eps * t) * t > Scalar(1)) m_matT.col(n).tail(size - i) /= t; | 
 |         } | 
 |       } | 
 |     } else if (q < Scalar(0) && n > 0)  // Complex vector | 
 |     { | 
 |       Scalar lastra(0), lastsa(0), lastw(0); | 
 |       Index l = n - 1; | 
 |  | 
 |       // Last vector component imaginary so matrix is triangular | 
 |       if (abs(m_matT.coeff(n, n - 1)) > abs(m_matT.coeff(n - 1, n))) { | 
 |         m_matT.coeffRef(n - 1, n - 1) = q / m_matT.coeff(n, n - 1); | 
 |         m_matT.coeffRef(n - 1, n) = -(m_matT.coeff(n, n) - p) / m_matT.coeff(n, n - 1); | 
 |       } else { | 
 |         ComplexScalar cc = | 
 |             ComplexScalar(Scalar(0), -m_matT.coeff(n - 1, n)) / ComplexScalar(m_matT.coeff(n - 1, n - 1) - p, q); | 
 |         m_matT.coeffRef(n - 1, n - 1) = numext::real(cc); | 
 |         m_matT.coeffRef(n - 1, n) = numext::imag(cc); | 
 |       } | 
 |       m_matT.coeffRef(n, n - 1) = Scalar(0); | 
 |       m_matT.coeffRef(n, n) = Scalar(1); | 
 |       for (Index i = n - 2; i >= 0; i--) { | 
 |         Scalar ra = m_matT.row(i).segment(l, n - l + 1).dot(m_matT.col(n - 1).segment(l, n - l + 1)); | 
 |         Scalar sa = m_matT.row(i).segment(l, n - l + 1).dot(m_matT.col(n).segment(l, n - l + 1)); | 
 |         Scalar w = m_matT.coeff(i, i) - p; | 
 |  | 
 |         if (m_eivalues.coeff(i).imag() < Scalar(0)) { | 
 |           lastw = w; | 
 |           lastra = ra; | 
 |           lastsa = sa; | 
 |         } else { | 
 |           l = i; | 
 |           if (m_eivalues.coeff(i).imag() == RealScalar(0)) { | 
 |             ComplexScalar cc = ComplexScalar(-ra, -sa) / ComplexScalar(w, q); | 
 |             m_matT.coeffRef(i, n - 1) = numext::real(cc); | 
 |             m_matT.coeffRef(i, n) = numext::imag(cc); | 
 |           } else { | 
 |             // Solve complex equations | 
 |             Scalar x = m_matT.coeff(i, i + 1); | 
 |             Scalar y = m_matT.coeff(i + 1, i); | 
 |             Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + | 
 |                         m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; | 
 |             Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; | 
 |             if ((vr == Scalar(0)) && (vi == Scalar(0))) | 
 |               vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw)); | 
 |  | 
 |             ComplexScalar cc = ComplexScalar(x * lastra - lastw * ra + q * sa, x * lastsa - lastw * sa - q * ra) / | 
 |                                ComplexScalar(vr, vi); | 
 |             m_matT.coeffRef(i, n - 1) = numext::real(cc); | 
 |             m_matT.coeffRef(i, n) = numext::imag(cc); | 
 |             if (abs(x) > (abs(lastw) + abs(q))) { | 
 |               m_matT.coeffRef(i + 1, n - 1) = (-ra - w * m_matT.coeff(i, n - 1) + q * m_matT.coeff(i, n)) / x; | 
 |               m_matT.coeffRef(i + 1, n) = (-sa - w * m_matT.coeff(i, n) - q * m_matT.coeff(i, n - 1)) / x; | 
 |             } else { | 
 |               cc = ComplexScalar(-lastra - y * m_matT.coeff(i, n - 1), -lastsa - y * m_matT.coeff(i, n)) / | 
 |                    ComplexScalar(lastw, q); | 
 |               m_matT.coeffRef(i + 1, n - 1) = numext::real(cc); | 
 |               m_matT.coeffRef(i + 1, n) = numext::imag(cc); | 
 |             } | 
 |           } | 
 |  | 
 |           // Overflow control | 
 |           Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i, n - 1)), abs(m_matT.coeff(i, n))); | 
 |           if ((eps * t) * t > Scalar(1)) m_matT.block(i, n - 1, size - i, 2) /= t; | 
 |         } | 
 |       } | 
 |  | 
 |       // We handled a pair of complex conjugate eigenvalues, so need to skip them both | 
 |       n--; | 
 |     } else { | 
 |       eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)");  // this should not happen | 
 |     } | 
 |   } | 
 |  | 
 |   // Back transformation to get eigenvectors of original matrix | 
 |   for (Index j = size - 1; j >= 0; j--) { | 
 |     m_tmp.noalias() = m_eivec.leftCols(j + 1) * m_matT.col(j).segment(0, j + 1); | 
 |     m_eivec.col(j) = m_tmp; | 
 |   } | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_EIGENSOLVER_H |