| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_QUATERNION_H | 
 | #define EIGEN_QUATERNION_H | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /*************************************************************************** | 
 |  * Definition of QuaternionBase<Derived> | 
 |  * The implementation is at the end of the file | 
 |  ***************************************************************************/ | 
 |  | 
 | namespace internal { | 
 | template <typename Other, int OtherRows = Other::RowsAtCompileTime, int OtherCols = Other::ColsAtCompileTime> | 
 | struct quaternionbase_assign_impl; | 
 | } | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |  * \class QuaternionBase | 
 |  * \brief Base class for quaternion expressions | 
 |  * \tparam Derived derived type (CRTP) | 
 |  * \sa class Quaternion | 
 |  */ | 
 | template <class Derived> | 
 | class QuaternionBase : public RotationBase<Derived, 3> { | 
 |  public: | 
 |   typedef RotationBase<Derived, 3> Base; | 
 |  | 
 |   using Base::operator*; | 
 |   using Base::derived; | 
 |  | 
 |   typedef typename internal::traits<Derived>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef typename internal::traits<Derived>::Coefficients Coefficients; | 
 |   typedef typename Coefficients::CoeffReturnType CoeffReturnType; | 
 |   typedef std::conditional_t<bool(internal::traits<Derived>::Flags& LvalueBit), Scalar&, CoeffReturnType> | 
 |       NonConstCoeffReturnType; | 
 |  | 
 |   enum { Flags = Eigen::internal::traits<Derived>::Flags }; | 
 |  | 
 |   // typedef typename Matrix<Scalar,4,1> Coefficients; | 
 |   /** the type of a 3D vector */ | 
 |   typedef Matrix<Scalar, 3, 1> Vector3; | 
 |   /** the equivalent rotation matrix type */ | 
 |   typedef Matrix<Scalar, 3, 3> Matrix3; | 
 |   /** the equivalent angle-axis type */ | 
 |   typedef AngleAxis<Scalar> AngleAxisType; | 
 |  | 
 |   /** \returns the \c x coefficient */ | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); } | 
 |   /** \returns the \c y coefficient */ | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); } | 
 |   /** \returns the \c z coefficient */ | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); } | 
 |   /** \returns the \c w coefficient */ | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); } | 
 |  | 
 |   /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */ | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); } | 
 |   /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */ | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); } | 
 |   /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */ | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); } | 
 |   /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */ | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); } | 
 |  | 
 |   /** \returns a read-only vector expression of the imaginary part (x,y,z) */ | 
 |   EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients, 3> vec() const { return coeffs().template head<3>(); } | 
 |  | 
 |   /** \returns a vector expression of the imaginary part (x,y,z) */ | 
 |   EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients, 3> vec() { return coeffs().template head<3>(); } | 
 |  | 
 |   /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ | 
 |   EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { | 
 |     return derived().coeffs(); | 
 |   } | 
 |  | 
 |   /** \returns a vector expression of the coefficients (x,y,z,w) */ | 
 |   EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); } | 
 |  | 
 |   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); | 
 |   template <class OtherDerived> | 
 |   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other); | 
 |  | 
 |   // disabled this copy operator as it is giving very strange compilation errors when compiling | 
 |   // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's | 
 |   // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase | 
 |   // we didn't have to add, in addition to templated operator=, such a non-templated copy operator. | 
 |   //  Derived& operator=(const QuaternionBase& other) | 
 |   //  { return operator=<Derived>(other); } | 
 |  | 
 |   EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa); | 
 |   template <class OtherDerived> | 
 |   EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m); | 
 |  | 
 |   /** \returns a quaternion representing an identity rotation | 
 |    * \sa MatrixBase::Identity() | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { | 
 |     return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); | 
 |   } | 
 |  | 
 |   /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { | 
 |     coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /** \returns the squared norm of the quaternion's coefficients | 
 |    * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } | 
 |  | 
 |   /** \returns the norm of the quaternion's coefficients | 
 |    * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); } | 
 |  | 
 |   /** Normalizes the quaternion \c *this | 
 |    * \sa normalized(), MatrixBase::normalize() */ | 
 |   EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); } | 
 |   /** \returns a normalized copy of \c *this | 
 |    * \sa normalize(), MatrixBase::normalized() */ | 
 |   EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); } | 
 |  | 
 |   /** \returns the dot product of \c *this and \a other | 
 |    * Geometrically speaking, the dot product of two unit quaternions | 
 |    * corresponds to the cosine of half the angle between the two rotations. | 
 |    * \sa angularDistance() | 
 |    */ | 
 |   template <class OtherDerived> | 
 |   EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { | 
 |     return coeffs().dot(other.coeffs()); | 
 |   } | 
 |  | 
 |   template <class OtherDerived> | 
 |   EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const; | 
 |  | 
 |   /** \returns an equivalent 3x3 rotation matrix */ | 
 |   EIGEN_DEVICE_FUNC inline Matrix3 toRotationMatrix() const; | 
 |  | 
 |   /** \returns the quaternion which transform \a a into \a b through a rotation */ | 
 |   template <typename Derived1, typename Derived2> | 
 |   EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); | 
 |  | 
 |   template <class OtherDerived> | 
 |   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator*(const QuaternionBase<OtherDerived>& q) const; | 
 |   template <class OtherDerived> | 
 |   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*=(const QuaternionBase<OtherDerived>& q); | 
 |  | 
 |   /** \returns the quaternion describing the inverse rotation */ | 
 |   EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const; | 
 |  | 
 |   /** \returns the conjugated quaternion */ | 
 |   EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const; | 
 |  | 
 |   template <class OtherDerived> | 
 |   EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const; | 
 |  | 
 |   /** \returns true if each coefficients of \c *this and \a other are all exactly equal. | 
 |    * \warning When using floating point scalar values you probably should rather use a | 
 |    *          fuzzy comparison such as isApprox() | 
 |    * \sa isApprox(), operator!= */ | 
 |   template <class OtherDerived> | 
 |   EIGEN_DEVICE_FUNC inline bool operator==(const QuaternionBase<OtherDerived>& other) const { | 
 |     return coeffs() == other.coeffs(); | 
 |   } | 
 |  | 
 |   /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. | 
 |    * \warning When using floating point scalar values you probably should rather use a | 
 |    *          fuzzy comparison such as isApprox() | 
 |    * \sa isApprox(), operator== */ | 
 |   template <class OtherDerived> | 
 |   EIGEN_DEVICE_FUNC inline bool operator!=(const QuaternionBase<OtherDerived>& other) const { | 
 |     return coeffs() != other.coeffs(); | 
 |   } | 
 |  | 
 |   /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
 |    * determined by \a prec. | 
 |    * | 
 |    * \sa MatrixBase::isApprox() */ | 
 |   template <class OtherDerived> | 
 |   EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, | 
 |                                   const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const { | 
 |     return coeffs().isApprox(other.coeffs(), prec); | 
 |   } | 
 |  | 
 |   /** return the result vector of \a v through the rotation*/ | 
 |   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; | 
 |  | 
 | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
 |   /** \returns \c *this with scalar type casted to \a NewScalarType | 
 |    * | 
 |    * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
 |    * then this function smartly returns a const reference to \c *this. | 
 |    */ | 
 |   template <typename NewScalarType> | 
 |   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived, Quaternion<NewScalarType> >::type cast() const; | 
 |  | 
 | #else | 
 |  | 
 |   template <typename NewScalarType> | 
 |   EIGEN_DEVICE_FUNC inline std::enable_if_t<internal::is_same<Scalar, NewScalarType>::value, const Derived&> cast() | 
 |       const { | 
 |     return derived(); | 
 |   } | 
 |  | 
 |   template <typename NewScalarType> | 
 |   EIGEN_DEVICE_FUNC inline std::enable_if_t<!internal::is_same<Scalar, NewScalarType>::value, | 
 |                                             Quaternion<NewScalarType> > | 
 |   cast() const { | 
 |     return Quaternion<NewScalarType>(coeffs().template cast<NewScalarType>()); | 
 |   } | 
 | #endif | 
 |  | 
 | #ifndef EIGEN_NO_IO | 
 |   friend std::ostream& operator<<(std::ostream& s, const QuaternionBase<Derived>& q) { | 
 |     s << q.x() << "i + " << q.y() << "j + " << q.z() << "k" | 
 |       << " + " << q.w(); | 
 |     return s; | 
 |   } | 
 | #endif | 
 |  | 
 | #ifdef EIGEN_QUATERNIONBASE_PLUGIN | 
 | #include EIGEN_QUATERNIONBASE_PLUGIN | 
 | #endif | 
 |  protected: | 
 |   EIGEN_DEFAULT_COPY_CONSTRUCTOR(QuaternionBase) | 
 |   EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(QuaternionBase) | 
 | }; | 
 |  | 
 | /*************************************************************************** | 
 |  * Definition/implementation of Quaternion<Scalar> | 
 |  ***************************************************************************/ | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |  * | 
 |  * \class Quaternion | 
 |  * | 
 |  * \brief The quaternion class used to represent 3D orientations and rotations | 
 |  * | 
 |  * \tparam Scalar_ the scalar type, i.e., the type of the coefficients | 
 |  * \tparam Options_ controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is | 
 |  * AutoAlign. | 
 |  * | 
 |  * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of | 
 |  * orientations and rotations of objects in three dimensions. Compared to other representations | 
 |  * like Euler angles or 3x3 matrices, quaternions offer the following advantages: | 
 |  * \li \b compact storage (4 scalars) | 
 |  * \li \b efficient to compose (28 flops), | 
 |  * \li \b stable spherical interpolation | 
 |  * | 
 |  * The following two typedefs are provided for convenience: | 
 |  * \li \c Quaternionf for \c float | 
 |  * \li \c Quaterniond for \c double | 
 |  * | 
 |  * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not | 
 |  * normalized. | 
 |  * | 
 |  * \sa  class AngleAxis, class Transform | 
 |  */ | 
 |  | 
 | namespace internal { | 
 | template <typename Scalar_, int Options_> | 
 | struct traits<Quaternion<Scalar_, Options_> > { | 
 |   typedef Quaternion<Scalar_, Options_> PlainObject; | 
 |   typedef Scalar_ Scalar; | 
 |   typedef Matrix<Scalar_, 4, 1, Options_> Coefficients; | 
 |   enum { Alignment = internal::traits<Coefficients>::Alignment, Flags = LvalueBit }; | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | template <typename Scalar_, int Options_> | 
 | class Quaternion : public QuaternionBase<Quaternion<Scalar_, Options_> > { | 
 |  public: | 
 |   typedef QuaternionBase<Quaternion<Scalar_, Options_> > Base; | 
 |   enum { NeedsAlignment = internal::traits<Quaternion>::Alignment > 0 }; | 
 |  | 
 |   typedef Scalar_ Scalar; | 
 |  | 
 |   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) | 
 |   using Base::operator*=; | 
 |  | 
 |   typedef typename internal::traits<Quaternion>::Coefficients Coefficients; | 
 |   typedef typename Base::AngleAxisType AngleAxisType; | 
 |  | 
 |   /** Default constructor leaving the quaternion uninitialized. */ | 
 |   EIGEN_DEVICE_FUNC inline Quaternion() {} | 
 |  | 
 |   /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from | 
 |    * its four coefficients \a w, \a x, \a y and \a z. | 
 |    * | 
 |    * \warning Note the order of the arguments: the real \a w coefficient first, | 
 |    * while internally the coefficients are stored in the following order: | 
 |    * [\c x, \c y, \c z, \c w] | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) | 
 |       : m_coeffs(x, y, z, w) {} | 
 |  | 
 |   /** Constructs and initializes a quaternion from its real part as a scalar, | 
 |    *  and its imaginary part as a 3-vector [\c x, \c y, \c z] | 
 |    */ | 
 |   template <typename Derived> | 
 |   EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Eigen::MatrixBase<Derived>& vec) | 
 |       : m_coeffs(vec.x(), vec.y(), vec.z(), w) { | 
 |     EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 3); | 
 |   } | 
 |  | 
 |   /** Constructs and initialize a quaternion from the array data */ | 
 |   EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {} | 
 |  | 
 |   /** Copy constructor */ | 
 |   template <class Derived> | 
 |   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { | 
 |     this->Base::operator=(other); | 
 |   } | 
 |  | 
 |   /** Constructs and initializes a quaternion from the angle-axis \a aa */ | 
 |   EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } | 
 |  | 
 |   /** Constructs and initializes a quaternion from either: | 
 |    *  - a rotation matrix expression, | 
 |    *  - a 4D vector expression representing quaternion coefficients in the order [\c x, \c y, \c z, \c w]. | 
 |    */ | 
 |   template <typename Derived> | 
 |   EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { | 
 |     *this = other; | 
 |   } | 
 |  | 
 |   /** Explicit copy constructor with scalar conversion */ | 
 |   template <typename OtherScalar, int OtherOptions> | 
 |   EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) { | 
 |     m_coeffs = other.coeffs().template cast<Scalar>(); | 
 |   } | 
 |  | 
 |   // We define a copy constructor, which means we don't get an implicit move constructor or assignment operator. | 
 |   /** Default move constructor */ | 
 |   EIGEN_DEVICE_FUNC inline Quaternion(Quaternion&& other) | 
 |       EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value) | 
 |       : m_coeffs(std::move(other.coeffs())) {} | 
 |  | 
 |   /** Default move assignment operator */ | 
 |   EIGEN_DEVICE_FUNC Quaternion& operator=(Quaternion&& other) | 
 |       EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value) { | 
 |     m_coeffs = std::move(other.coeffs()); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC static Quaternion UnitRandom(); | 
 |  | 
 |   template <typename Derived1, typename Derived2> | 
 |   EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); | 
 |  | 
 |   EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } | 
 |   EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } | 
 |  | 
 |   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment)) | 
 |  | 
 | #ifdef EIGEN_QUATERNION_PLUGIN | 
 | #include EIGEN_QUATERNION_PLUGIN | 
 | #endif | 
 |  | 
 |  protected: | 
 |   Coefficients m_coeffs; | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   EIGEN_STATIC_ASSERT((Options_ & DontAlign) == Options_, INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
 | #endif | 
 | }; | 
 |  | 
 | /** \ingroup Geometry_Module | 
 |  * single precision quaternion type */ | 
 | typedef Quaternion<float> Quaternionf; | 
 | /** \ingroup Geometry_Module | 
 |  * double precision quaternion type */ | 
 | typedef Quaternion<double> Quaterniond; | 
 |  | 
 | /*************************************************************************** | 
 |  * Specialization of Map<Quaternion<Scalar>> | 
 |  ***************************************************************************/ | 
 |  | 
 | namespace internal { | 
 | template <typename Scalar_, int Options_> | 
 | struct traits<Map<Quaternion<Scalar_>, Options_> > | 
 |     : traits<Quaternion<Scalar_, (int(Options_) & Aligned) == Aligned ? AutoAlign : DontAlign> > { | 
 |   typedef Map<Matrix<Scalar_, 4, 1>, Options_> Coefficients; | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | namespace internal { | 
 | template <typename Scalar_, int Options_> | 
 | struct traits<Map<const Quaternion<Scalar_>, Options_> > | 
 |     : traits<Quaternion<Scalar_, (int(Options_) & Aligned) == Aligned ? AutoAlign : DontAlign> > { | 
 |   typedef Map<const Matrix<Scalar_, 4, 1>, Options_> Coefficients; | 
 |   typedef traits<Quaternion<Scalar_, (int(Options_) & Aligned) == Aligned ? AutoAlign : DontAlign> > TraitsBase; | 
 |   enum { Flags = TraitsBase::Flags & ~LvalueBit }; | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | /** \ingroup Geometry_Module | 
 |  * \brief Quaternion expression mapping a constant memory buffer | 
 |  * | 
 |  * \tparam Scalar_ the type of the Quaternion coefficients | 
 |  * \tparam Options_ see class Map | 
 |  * | 
 |  * This is a specialization of class Map for Quaternion. This class allows to view | 
 |  * a 4 scalar memory buffer as an Eigen's Quaternion object. | 
 |  * | 
 |  * \sa class Map, class Quaternion, class QuaternionBase | 
 |  */ | 
 | template <typename Scalar_, int Options_> | 
 | class Map<const Quaternion<Scalar_>, Options_> : public QuaternionBase<Map<const Quaternion<Scalar_>, Options_> > { | 
 |  public: | 
 |   typedef QuaternionBase<Map<const Quaternion<Scalar_>, Options_> > Base; | 
 |  | 
 |   typedef Scalar_ Scalar; | 
 |   typedef typename internal::traits<Map>::Coefficients Coefficients; | 
 |   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) | 
 |   using Base::operator*=; | 
 |  | 
 |   /** Constructs a Mapped Quaternion object from the pointer \a coeffs | 
 |    * | 
 |    * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: | 
 |    * \code *coeffs == {x, y, z, w} \endcode | 
 |    * | 
 |    * If the template parameter Options_ is set to #Aligned, then the pointer coeffs must be aligned. */ | 
 |   EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} | 
 |  | 
 |   EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } | 
 |  | 
 |  protected: | 
 |   const Coefficients m_coeffs; | 
 | }; | 
 |  | 
 | /** \ingroup Geometry_Module | 
 |  * \brief Expression of a quaternion from a memory buffer | 
 |  * | 
 |  * \tparam Scalar_ the type of the Quaternion coefficients | 
 |  * \tparam Options_ see class Map | 
 |  * | 
 |  * This is a specialization of class Map for Quaternion. This class allows to view | 
 |  * a 4 scalar memory buffer as an Eigen's  Quaternion object. | 
 |  * | 
 |  * \sa class Map, class Quaternion, class QuaternionBase | 
 |  */ | 
 | template <typename Scalar_, int Options_> | 
 | class Map<Quaternion<Scalar_>, Options_> : public QuaternionBase<Map<Quaternion<Scalar_>, Options_> > { | 
 |  public: | 
 |   typedef QuaternionBase<Map<Quaternion<Scalar_>, Options_> > Base; | 
 |  | 
 |   typedef Scalar_ Scalar; | 
 |   typedef typename internal::traits<Map>::Coefficients Coefficients; | 
 |   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) | 
 |   using Base::operator*=; | 
 |  | 
 |   /** Constructs a Mapped Quaternion object from the pointer \a coeffs | 
 |    * | 
 |    * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: | 
 |    * \code *coeffs == {x, y, z, w} \endcode | 
 |    * | 
 |    * If the template parameter Options_ is set to #Aligned, then the pointer coeffs must be aligned. */ | 
 |   EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} | 
 |  | 
 |   EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } | 
 |   EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } | 
 |  | 
 |  protected: | 
 |   Coefficients m_coeffs; | 
 | }; | 
 |  | 
 | /** \ingroup Geometry_Module | 
 |  * Map an unaligned array of single precision scalars as a quaternion */ | 
 | typedef Map<Quaternion<float>, 0> QuaternionMapf; | 
 | /** \ingroup Geometry_Module | 
 |  * Map an unaligned array of double precision scalars as a quaternion */ | 
 | typedef Map<Quaternion<double>, 0> QuaternionMapd; | 
 | /** \ingroup Geometry_Module | 
 |  * Map a 16-byte aligned array of single precision scalars as a quaternion */ | 
 | typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf; | 
 | /** \ingroup Geometry_Module | 
 |  * Map a 16-byte aligned array of double precision scalars as a quaternion */ | 
 | typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd; | 
 |  | 
 | /*************************************************************************** | 
 |  * Implementation of QuaternionBase methods | 
 |  ***************************************************************************/ | 
 |  | 
 | // Generic Quaternion * Quaternion product | 
 | // This product can be specialized for a given architecture via the Arch template argument. | 
 | namespace internal { | 
 | template <int Arch, class Derived1, class Derived2, typename Scalar> | 
 | struct quat_product { | 
 |   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, | 
 |                                                                       const QuaternionBase<Derived2>& b) { | 
 |     return Quaternion<Scalar>(a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), | 
 |                               a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), | 
 |                               a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), | 
 |                               a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()); | 
 |   } | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | /** \returns the concatenation of two rotations as a quaternion-quaternion product */ | 
 | template <class Derived> | 
 | template <class OtherDerived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar> | 
 | QuaternionBase<Derived>::operator*(const QuaternionBase<OtherDerived>& other) const { | 
 |   EIGEN_STATIC_ASSERT( | 
 |       (internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value), | 
 |       YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
 |   return internal::quat_product<Architecture::Target, Derived, OtherDerived, | 
 |                                 typename internal::traits<Derived>::Scalar>::run(*this, other); | 
 | } | 
 |  | 
 | /** \sa operator*(Quaternion) */ | 
 | template <class Derived> | 
 | template <class OtherDerived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*=( | 
 |     const QuaternionBase<OtherDerived>& other) { | 
 |   derived() = derived() * other.derived(); | 
 |   return derived(); | 
 | } | 
 |  | 
 | /** Rotation of a vector by a quaternion. | 
 |  * \remarks If the quaternion is used to rotate several points (>1) | 
 |  * then it is much more efficient to first convert it to a 3x3 Matrix. | 
 |  * Comparison of the operation cost for n transformations: | 
 |  *   - Quaternion2:    30n | 
 |  *   - Via a Matrix3: 24 + 15n | 
 |  */ | 
 | template <class Derived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 | 
 | QuaternionBase<Derived>::_transformVector(const Vector3& v) const { | 
 |   // Note that this algorithm comes from the optimization by hand | 
 |   // of the conversion to a Matrix followed by a Matrix/Vector product. | 
 |   // It appears to be much faster than the common algorithm found | 
 |   // in the literature (30 versus 39 flops). It also requires two | 
 |   // Vector3 as temporaries. | 
 |   Vector3 uv = this->vec().cross(v); | 
 |   uv += uv; | 
 |   return v + this->w() * uv + this->vec().cross(uv); | 
 | } | 
 |  | 
 | template <class Derived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=( | 
 |     const QuaternionBase<Derived>& other) { | 
 |   coeffs() = other.coeffs(); | 
 |   return derived(); | 
 | } | 
 |  | 
 | template <class Derived> | 
 | template <class OtherDerived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=( | 
 |     const QuaternionBase<OtherDerived>& other) { | 
 |   coeffs() = other.coeffs(); | 
 |   return derived(); | 
 | } | 
 |  | 
 | /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this | 
 |  */ | 
 | template <class Derived> | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) { | 
 |   EIGEN_USING_STD(cos) | 
 |   EIGEN_USING_STD(sin) | 
 |   Scalar ha = Scalar(0.5) * aa.angle();  // Scalar(0.5) to suppress precision loss warnings | 
 |   this->w() = cos(ha); | 
 |   this->vec() = sin(ha) * aa.axis(); | 
 |   return derived(); | 
 | } | 
 |  | 
 | /** Set \c *this from the expression \a xpr: | 
 |  *   - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion | 
 |  *   - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix | 
 |  *     and \a xpr is converted to a quaternion | 
 |  */ | 
 |  | 
 | template <class Derived> | 
 | template <class MatrixDerived> | 
 | EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) { | 
 |   EIGEN_STATIC_ASSERT( | 
 |       (internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value), | 
 |       YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
 |   internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); | 
 |   return derived(); | 
 | } | 
 |  | 
 | /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to | 
 |  * be normalized, otherwise the result is undefined. | 
 |  */ | 
 | template <class Derived> | 
 | EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3 QuaternionBase<Derived>::toRotationMatrix( | 
 |     void) const { | 
 |   // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) | 
 |   // if not inlined then the cost of the return by value is huge ~ +35%, | 
 |   // however, not inlining this function is an order of magnitude slower, so | 
 |   // it has to be inlined, and so the return by value is not an issue | 
 |   Matrix3 res; | 
 |  | 
 |   const Scalar tx = Scalar(2) * this->x(); | 
 |   const Scalar ty = Scalar(2) * this->y(); | 
 |   const Scalar tz = Scalar(2) * this->z(); | 
 |   const Scalar twx = tx * this->w(); | 
 |   const Scalar twy = ty * this->w(); | 
 |   const Scalar twz = tz * this->w(); | 
 |   const Scalar txx = tx * this->x(); | 
 |   const Scalar txy = ty * this->x(); | 
 |   const Scalar txz = tz * this->x(); | 
 |   const Scalar tyy = ty * this->y(); | 
 |   const Scalar tyz = tz * this->y(); | 
 |   const Scalar tzz = tz * this->z(); | 
 |  | 
 |   res.coeffRef(0, 0) = Scalar(1) - (tyy + tzz); | 
 |   res.coeffRef(0, 1) = txy - twz; | 
 |   res.coeffRef(0, 2) = txz + twy; | 
 |   res.coeffRef(1, 0) = txy + twz; | 
 |   res.coeffRef(1, 1) = Scalar(1) - (txx + tzz); | 
 |   res.coeffRef(1, 2) = tyz - twx; | 
 |   res.coeffRef(2, 0) = txz - twy; | 
 |   res.coeffRef(2, 1) = tyz + twx; | 
 |   res.coeffRef(2, 2) = Scalar(1) - (txx + tyy); | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | /** Sets \c *this to be a quaternion representing a rotation between | 
 |  * the two arbitrary vectors \a a and \a b. In other words, the built | 
 |  * rotation represent a rotation sending the line of direction \a a | 
 |  * to the line of direction \a b, both lines passing through the origin. | 
 |  * | 
 |  * \returns a reference to \c *this. | 
 |  * | 
 |  * Note that the two input vectors do \b not have to be normalized, and | 
 |  * do not need to have the same norm. | 
 |  */ | 
 | template <class Derived> | 
 | template <typename Derived1, typename Derived2> | 
 | EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, | 
 |                                                                              const MatrixBase<Derived2>& b) { | 
 |   EIGEN_USING_STD(sqrt) | 
 |   Vector3 v0 = a.normalized(); | 
 |   Vector3 v1 = b.normalized(); | 
 |   Scalar c = v1.dot(v0); | 
 |  | 
 |   // if dot == -1, vectors are nearly opposites | 
 |   // => accurately compute the rotation axis by computing the | 
 |   //    intersection of the two planes. This is done by solving: | 
 |   //       x^T v0 = 0 | 
 |   //       x^T v1 = 0 | 
 |   //    under the constraint: | 
 |   //       ||x|| = 1 | 
 |   //    which yields a singular value problem | 
 |   if (c < Scalar(-1) + NumTraits<Scalar>::dummy_precision()) { | 
 |     c = numext::maxi(c, Scalar(-1)); | 
 |     Matrix<Scalar, 2, 3> m; | 
 |     m << v0.transpose(), v1.transpose(); | 
 |     JacobiSVD<Matrix<Scalar, 2, 3>, ComputeFullV> svd(m); | 
 |     Vector3 axis = svd.matrixV().col(2); | 
 |  | 
 |     Scalar w2 = (Scalar(1) + c) * Scalar(0.5); | 
 |     this->w() = sqrt(w2); | 
 |     this->vec() = axis * sqrt(Scalar(1) - w2); | 
 |     return derived(); | 
 |   } | 
 |   Vector3 axis = v0.cross(v1); | 
 |   Scalar s = sqrt((Scalar(1) + c) * Scalar(2)); | 
 |   Scalar invs = Scalar(1) / s; | 
 |   this->vec() = axis * invs; | 
 |   this->w() = s * Scalar(0.5); | 
 |  | 
 |   return derived(); | 
 | } | 
 |  | 
 | /** \returns a random unit quaternion following a uniform distribution law on SO(3) | 
 |  * | 
 |  * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html | 
 |  */ | 
 | template <typename Scalar, int Options> | 
 | EIGEN_DEVICE_FUNC Quaternion<Scalar, Options> Quaternion<Scalar, Options>::UnitRandom() { | 
 |   EIGEN_USING_STD(sqrt) | 
 |   EIGEN_USING_STD(sin) | 
 |   EIGEN_USING_STD(cos) | 
 |   const Scalar u1 = internal::random<Scalar>(0, 1), u2 = internal::random<Scalar>(0, 2 * EIGEN_PI), | 
 |                u3 = internal::random<Scalar>(0, 2 * EIGEN_PI); | 
 |   const Scalar a = sqrt(Scalar(1) - u1), b = sqrt(u1); | 
 |   return Quaternion(a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)); | 
 | } | 
 |  | 
 | /** Returns a quaternion representing a rotation between | 
 |  * the two arbitrary vectors \a a and \a b. In other words, the built | 
 |  * rotation represent a rotation sending the line of direction \a a | 
 |  * to the line of direction \a b, both lines passing through the origin. | 
 |  * | 
 |  * \returns resulting quaternion | 
 |  * | 
 |  * Note that the two input vectors do \b not have to be normalized, and | 
 |  * do not need to have the same norm. | 
 |  */ | 
 | template <typename Scalar, int Options> | 
 | template <typename Derived1, typename Derived2> | 
 | EIGEN_DEVICE_FUNC Quaternion<Scalar, Options> Quaternion<Scalar, Options>::FromTwoVectors( | 
 |     const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) { | 
 |   Quaternion quat; | 
 |   quat.setFromTwoVectors(a, b); | 
 |   return quat; | 
 | } | 
 |  | 
 | /** \returns the multiplicative inverse of \c *this | 
 |  * Note that in most cases, i.e., if you simply want the opposite rotation, | 
 |  * and/or the quaternion is normalized, then it is enough to use the conjugate. | 
 |  * | 
 |  * \sa QuaternionBase::conjugate() | 
 |  */ | 
 | template <class Derived> | 
 | EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() | 
 |     const { | 
 |   // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite()  ?? | 
 |   Scalar n2 = this->squaredNorm(); | 
 |   if (n2 > Scalar(0)) | 
 |     return Quaternion<Scalar>(conjugate().coeffs() / n2); | 
 |   else { | 
 |     // return an invalid result to flag the error | 
 |     return Quaternion<Scalar>(Coefficients::Zero()); | 
 |   } | 
 | } | 
 |  | 
 | // Generic conjugate of a Quaternion | 
 | namespace internal { | 
 | template <int Arch, class Derived, typename Scalar> | 
 | struct quat_conj { | 
 |   EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q) { | 
 |     return Quaternion<Scalar>(q.w(), -q.x(), -q.y(), -q.z()); | 
 |   } | 
 | }; | 
 | }  // namespace internal | 
 |  | 
 | /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse | 
 |  * if the quaternion is normalized. | 
 |  * The conjugate of a quaternion represents the opposite rotation. | 
 |  * | 
 |  * \sa Quaternion2::inverse() | 
 |  */ | 
 | template <class Derived> | 
 | EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::conjugate() | 
 |     const { | 
 |   return internal::quat_conj<Architecture::Target, Derived, typename internal::traits<Derived>::Scalar>::run(*this); | 
 | } | 
 |  | 
 | /** \returns the angle (in radian) between two rotations | 
 |  * \sa dot() | 
 |  */ | 
 | template <class Derived> | 
 | template <class OtherDerived> | 
 | EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar QuaternionBase<Derived>::angularDistance( | 
 |     const QuaternionBase<OtherDerived>& other) const { | 
 |   EIGEN_USING_STD(atan2) | 
 |   Quaternion<Scalar> d = (*this) * other.conjugate(); | 
 |   return Scalar(2) * atan2(d.vec().norm(), numext::abs(d.w())); | 
 | } | 
 |  | 
 | /** \returns the spherical linear interpolation between the two quaternions | 
 |  * \c *this and \a other at the parameter \a t in [0;1]. | 
 |  * | 
 |  * This represents an interpolation for a constant motion between \c *this and \a other, | 
 |  * see also http://en.wikipedia.org/wiki/Slerp. | 
 |  */ | 
 | template <class Derived> | 
 | template <class OtherDerived> | 
 | EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::slerp( | 
 |     const Scalar& t, const QuaternionBase<OtherDerived>& other) const { | 
 |   EIGEN_USING_STD(acos) | 
 |   EIGEN_USING_STD(sin) | 
 |   const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); | 
 |   Scalar d = this->dot(other); | 
 |   Scalar absD = numext::abs(d); | 
 |  | 
 |   Scalar scale0; | 
 |   Scalar scale1; | 
 |  | 
 |   if (absD >= one) { | 
 |     scale0 = Scalar(1) - t; | 
 |     scale1 = t; | 
 |   } else { | 
 |     // theta is the angle between the 2 quaternions | 
 |     Scalar theta = acos(absD); | 
 |     Scalar sinTheta = sin(theta); | 
 |  | 
 |     scale0 = sin((Scalar(1) - t) * theta) / sinTheta; | 
 |     scale1 = sin((t * theta)) / sinTheta; | 
 |   } | 
 |   if (d < Scalar(0)) scale1 = -scale1; | 
 |  | 
 |   return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | // set from a rotation matrix | 
 | template <typename Other> | 
 | struct quaternionbase_assign_impl<Other, 3, 3> { | 
 |   typedef typename Other::Scalar Scalar; | 
 |   template <class Derived> | 
 |   EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat) { | 
 |     const typename internal::nested_eval<Other, 2>::type mat(a_mat); | 
 |     EIGEN_USING_STD(sqrt) | 
 |     // This algorithm comes from  "Quaternion Calculus and Fast Animation", | 
 |     // Ken Shoemake, 1987 SIGGRAPH course notes | 
 |     Scalar t = mat.trace(); | 
 |     if (t > Scalar(0)) { | 
 |       t = sqrt(t + Scalar(1.0)); | 
 |       q.w() = Scalar(0.5) * t; | 
 |       t = Scalar(0.5) / t; | 
 |       q.x() = (mat.coeff(2, 1) - mat.coeff(1, 2)) * t; | 
 |       q.y() = (mat.coeff(0, 2) - mat.coeff(2, 0)) * t; | 
 |       q.z() = (mat.coeff(1, 0) - mat.coeff(0, 1)) * t; | 
 |     } else { | 
 |       Index i = 0; | 
 |       if (mat.coeff(1, 1) > mat.coeff(0, 0)) i = 1; | 
 |       if (mat.coeff(2, 2) > mat.coeff(i, i)) i = 2; | 
 |       Index j = (i + 1) % 3; | 
 |       Index k = (j + 1) % 3; | 
 |  | 
 |       t = sqrt(mat.coeff(i, i) - mat.coeff(j, j) - mat.coeff(k, k) + Scalar(1.0)); | 
 |       q.coeffs().coeffRef(i) = Scalar(0.5) * t; | 
 |       t = Scalar(0.5) / t; | 
 |       q.w() = (mat.coeff(k, j) - mat.coeff(j, k)) * t; | 
 |       q.coeffs().coeffRef(j) = (mat.coeff(j, i) + mat.coeff(i, j)) * t; | 
 |       q.coeffs().coeffRef(k) = (mat.coeff(k, i) + mat.coeff(i, k)) * t; | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | // set from a vector of coefficients assumed to be a quaternion | 
 | template <typename Other> | 
 | struct quaternionbase_assign_impl<Other, 4, 1> { | 
 |   typedef typename Other::Scalar Scalar; | 
 |   template <class Derived> | 
 |   EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec) { | 
 |     q.coeffs() = vec; | 
 |   } | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_QUATERNION_H |