| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
 | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_INCOMPLETE_CHOlESKY_H | 
 | #define EIGEN_INCOMPLETE_CHOlESKY_H | 
 |  | 
 | #include <vector> | 
 | #include <list> | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 | /** | 
 |  * \brief Modified Incomplete Cholesky with dual threshold | 
 |  * | 
 |  * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with | 
 |  *              Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999 | 
 |  * | 
 |  * \tparam Scalar the scalar type of the input matrices | 
 |  * \tparam UpLo_ The triangular part that will be used for the computations. It can be Lower | 
 |  *               or Upper. Default is Lower. | 
 |  * \tparam OrderingType_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is | 
 |  * AMDOrdering<int>. | 
 |  * | 
 |  * \implsparsesolverconcept | 
 |  * | 
 |  * It performs the following incomplete factorization: \f$ S P A P' S + \sigma I \approx L L' \f$ | 
 |  * where L is a lower triangular factor, S is a diagonal scaling matrix, P is a | 
 |  * fill-in reducing permutation as computed by the ordering method, and \f$ \sigma \f$ is a shift | 
 |  * for ensuring the decomposed matrix is positive definite. | 
 |  * | 
 |  * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$  be the scaled matrix on which the factorization is carried out, | 
 |  * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly | 
 |  * performed on the matrix B, and \sigma = 0. Otherwise, the factorization is performed on the shifted matrix \f$ B + | 
 |  * \sigma I \f$ for a shifting factor  \f$ \sigma \f$.  We start with \f$ \sigma = \sigma_0 - \beta \f$, where \f$ | 
 |  * \sigma_0 \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ | 
 |  * \sigma_0 = 10^{-3} \f$. If the factorization fails, then the shift in doubled until it succeed or a maximum of ten | 
 |  * attempts. If it still fails, as returned by the info() method, then you can either increase the initial shift, or | 
 |  * better use another preconditioning technique. | 
 |  * | 
 |  */ | 
 | template <typename Scalar, int UpLo_ = Lower, typename OrderingType_ = AMDOrdering<int> > | 
 | class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar, UpLo_, OrderingType_> > { | 
 |  protected: | 
 |   typedef SparseSolverBase<IncompleteCholesky<Scalar, UpLo_, OrderingType_> > Base; | 
 |   using Base::m_isInitialized; | 
 |  | 
 |  public: | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef OrderingType_ OrderingType; | 
 |   typedef typename OrderingType::PermutationType PermutationType; | 
 |   typedef typename PermutationType::StorageIndex StorageIndex; | 
 |   typedef SparseMatrix<Scalar, ColMajor, StorageIndex> FactorType; | 
 |   typedef Matrix<Scalar, Dynamic, 1> VectorSx; | 
 |   typedef Matrix<RealScalar, Dynamic, 1> VectorRx; | 
 |   typedef Matrix<StorageIndex, Dynamic, 1> VectorIx; | 
 |   typedef std::vector<std::list<StorageIndex> > VectorList; | 
 |   enum { UpLo = UpLo_ }; | 
 |   enum { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic }; | 
 |  | 
 |  public: | 
 |   /** Default constructor leaving the object in a partly non-initialized stage. | 
 |    * | 
 |    * You must call compute() or the pair analyzePattern()/factorize() to make it valid. | 
 |    * | 
 |    * \sa IncompleteCholesky(const MatrixType&) | 
 |    */ | 
 |   IncompleteCholesky() : m_initialShift(1e-3), m_analysisIsOk(false), m_factorizationIsOk(false) {} | 
 |  | 
 |   /** Constructor computing the incomplete factorization for the given matrix \a matrix. | 
 |    */ | 
 |   template <typename MatrixType> | 
 |   IncompleteCholesky(const MatrixType& matrix) | 
 |       : m_initialShift(1e-3), m_analysisIsOk(false), m_factorizationIsOk(false) { | 
 |     compute(matrix); | 
 |   } | 
 |  | 
 |   /** \returns number of rows of the factored matrix */ | 
 |   EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_L.rows(); } | 
 |  | 
 |   /** \returns number of columns of the factored matrix */ | 
 |   EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_L.cols(); } | 
 |  | 
 |   /** \brief Reports whether previous computation was successful. | 
 |    * | 
 |    * It triggers an assertion if \c *this has not been initialized through the respective constructor, | 
 |    * or a call to compute() or analyzePattern(). | 
 |    * | 
 |    * \returns \c Success if computation was successful, | 
 |    *          \c NumericalIssue if the matrix appears to be negative. | 
 |    */ | 
 |   ComputationInfo info() const { | 
 |     eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 |   /** \brief Set the initial shift parameter \f$ \sigma \f$. | 
 |    */ | 
 |   void setInitialShift(RealScalar shift) { m_initialShift = shift; } | 
 |  | 
 |   /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat | 
 |    */ | 
 |   template <typename MatrixType> | 
 |   void analyzePattern(const MatrixType& mat) { | 
 |     OrderingType ord; | 
 |     PermutationType pinv; | 
 |     ord(mat.template selfadjointView<UpLo>(), pinv); | 
 |     if (pinv.size() > 0) | 
 |       m_perm = pinv.inverse(); | 
 |     else | 
 |       m_perm.resize(0); | 
 |     m_L.resize(mat.rows(), mat.cols()); | 
 |     m_analysisIsOk = true; | 
 |     m_isInitialized = true; | 
 |     m_info = Success; | 
 |   } | 
 |  | 
 |   /** \brief Performs the numerical factorization of the input matrix \a mat | 
 |    * | 
 |    * The method analyzePattern() or compute() must have been called beforehand | 
 |    * with a matrix having the same pattern. | 
 |    * | 
 |    * \sa compute(), analyzePattern() | 
 |    */ | 
 |   template <typename MatrixType> | 
 |   void factorize(const MatrixType& mat); | 
 |  | 
 |   /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat | 
 |    * | 
 |    * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods. | 
 |    * | 
 |    * \sa analyzePattern(), factorize() | 
 |    */ | 
 |   template <typename MatrixType> | 
 |   void compute(const MatrixType& mat) { | 
 |     analyzePattern(mat); | 
 |     factorize(mat); | 
 |   } | 
 |  | 
 |   // internal | 
 |   template <typename Rhs, typename Dest> | 
 |   void _solve_impl(const Rhs& b, Dest& x) const { | 
 |     eigen_assert(m_factorizationIsOk && "factorize() should be called first"); | 
 |     if (m_perm.rows() == b.rows()) | 
 |       x = m_perm * b; | 
 |     else | 
 |       x = b; | 
 |     x = m_scale.asDiagonal() * x; | 
 |     x = m_L.template triangularView<Lower>().solve(x); | 
 |     x = m_L.adjoint().template triangularView<Upper>().solve(x); | 
 |     x = m_scale.asDiagonal() * x; | 
 |     if (m_perm.rows() == b.rows()) x = m_perm.inverse() * x; | 
 |   } | 
 |  | 
 |   /** \returns the sparse lower triangular factor L */ | 
 |   const FactorType& matrixL() const { | 
 |     eigen_assert(m_factorizationIsOk && "factorize() should be called first"); | 
 |     return m_L; | 
 |   } | 
 |  | 
 |   /** \returns a vector representing the scaling factor S */ | 
 |   const VectorRx& scalingS() const { | 
 |     eigen_assert(m_factorizationIsOk && "factorize() should be called first"); | 
 |     return m_scale; | 
 |   } | 
 |  | 
 |   /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */ | 
 |   const PermutationType& permutationP() const { | 
 |     eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); | 
 |     return m_perm; | 
 |   } | 
 |  | 
 |   /** \returns the final shift parameter from the computation */ | 
 |   RealScalar shift() const { return m_shift; } | 
 |  | 
 |  protected: | 
 |   FactorType m_L;             // The lower part stored in CSC | 
 |   VectorRx m_scale;           // The vector for scaling the matrix | 
 |   RealScalar m_initialShift;  // The initial shift parameter | 
 |   bool m_analysisIsOk; | 
 |   bool m_factorizationIsOk; | 
 |   ComputationInfo m_info; | 
 |   PermutationType m_perm; | 
 |   RealScalar m_shift;  // The final shift parameter. | 
 |  | 
 |  private: | 
 |   inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, | 
 |                          const Index& jk, VectorIx& firstElt, VectorList& listCol); | 
 | }; | 
 |  | 
 | // Based on the following paper: | 
 | //   C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with | 
 | //   Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999 | 
 | //   http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf | 
 | template <typename Scalar, int UpLo_, typename OrderingType> | 
 | template <typename MatrixType_> | 
 | void IncompleteCholesky<Scalar, UpLo_, OrderingType>::factorize(const MatrixType_& mat) { | 
 |   using std::sqrt; | 
 |   eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); | 
 |  | 
 |   // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of | 
 |   // the original matrix. Other strategies will be added | 
 |  | 
 |   // Apply the fill-reducing permutation computed in analyzePattern() | 
 |   if (m_perm.rows() == mat.rows())  // To detect the null permutation | 
 |   { | 
 |     // The temporary is needed to make sure that the diagonal entry is properly sorted | 
 |     FactorType tmp(mat.rows(), mat.cols()); | 
 |     tmp = mat.template selfadjointView<UpLo_>().twistedBy(m_perm); | 
 |     m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>(); | 
 |   } else { | 
 |     m_L.template selfadjointView<Lower>() = mat.template selfadjointView<UpLo_>(); | 
 |   } | 
 |  | 
 |   // The algorithm will insert increasingly large shifts on the diagonal until | 
 |   // factorization succeeds. Therefore we have to make sure that there is a | 
 |   // space in the datastructure to store such values, even if the original | 
 |   // matrix has a zero on the diagonal. | 
 |   bool modified = false; | 
 |   for (Index i = 0; i < mat.cols(); ++i) { | 
 |     bool inserted = false; | 
 |     m_L.findOrInsertCoeff(i, i, &inserted); | 
 |     if (inserted) { | 
 |       modified = true; | 
 |     } | 
 |   } | 
 |   if (modified) m_L.makeCompressed(); | 
 |  | 
 |   Index n = m_L.cols(); | 
 |   Index nnz = m_L.nonZeros(); | 
 |   Map<VectorSx> vals(m_L.valuePtr(), nnz);           // values | 
 |   Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz);    // Row indices | 
 |   Map<VectorIx> colPtr(m_L.outerIndexPtr(), n + 1);  // Pointer to the beginning of each row | 
 |   VectorIx firstElt(n - 1);  // for each j, points to the next entry in vals that will be used in the factorization | 
 |   VectorList listCol(n);     // listCol(j) is a linked list of columns to update column j | 
 |   VectorSx col_vals(n);      // Store a  nonzero values in each column | 
 |   VectorIx col_irow(n);      // Row indices of nonzero elements in each column | 
 |   VectorIx col_pattern(n); | 
 |   col_pattern.fill(-1); | 
 |   StorageIndex col_nnz; | 
 |  | 
 |   // Computes the scaling factors | 
 |   m_scale.resize(n); | 
 |   m_scale.setZero(); | 
 |   for (Index j = 0; j < n; j++) | 
 |     for (Index k = colPtr[j]; k < colPtr[j + 1]; k++) { | 
 |       m_scale(j) += numext::abs2(vals(k)); | 
 |       if (rowIdx[k] != j) m_scale(rowIdx[k]) += numext::abs2(vals(k)); | 
 |     } | 
 |  | 
 |   m_scale = m_scale.cwiseSqrt().cwiseSqrt(); | 
 |  | 
 |   for (Index j = 0; j < n; ++j) | 
 |     if (m_scale(j) > (std::numeric_limits<RealScalar>::min)()) | 
 |       m_scale(j) = RealScalar(1) / m_scale(j); | 
 |     else | 
 |       m_scale(j) = 1; | 
 |  | 
 |   // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster) | 
 |  | 
 |   // Scale and compute the shift for the matrix | 
 |   RealScalar mindiag = NumTraits<RealScalar>::highest(); | 
 |   for (Index j = 0; j < n; j++) { | 
 |     for (Index k = colPtr[j]; k < colPtr[j + 1]; k++) vals[k] *= (m_scale(j) * m_scale(rowIdx[k])); | 
 |     eigen_internal_assert(rowIdx[colPtr[j]] == j && | 
 |                           "IncompleteCholesky: only the lower triangular part must be stored"); | 
 |     mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag); | 
 |   } | 
 |  | 
 |   FactorType L_save = m_L; | 
 |  | 
 |   m_shift = RealScalar(0); | 
 |   if (mindiag <= RealScalar(0.)) m_shift = m_initialShift - mindiag; | 
 |  | 
 |   m_info = NumericalIssue; | 
 |  | 
 |   // Try to perform the incomplete factorization using the current shift | 
 |   int iter = 0; | 
 |   do { | 
 |     // Apply the shift to the diagonal elements of the matrix | 
 |     for (Index j = 0; j < n; j++) vals[colPtr[j]] += m_shift; | 
 |  | 
 |     // jki version of the Cholesky factorization | 
 |     Index j = 0; | 
 |     for (; j < n; ++j) { | 
 |       // Left-looking factorization of the j-th column | 
 |       // First, load the j-th column into col_vals | 
 |       Scalar diag = vals[colPtr[j]];  // It is assumed that only the lower part is stored | 
 |       col_nnz = 0; | 
 |       for (Index i = colPtr[j] + 1; i < colPtr[j + 1]; i++) { | 
 |         StorageIndex l = rowIdx[i]; | 
 |         col_vals(col_nnz) = vals[i]; | 
 |         col_irow(col_nnz) = l; | 
 |         col_pattern(l) = col_nnz; | 
 |         col_nnz++; | 
 |       } | 
 |       { | 
 |         typename std::list<StorageIndex>::iterator k; | 
 |         // Browse all previous columns that will update column j | 
 |         for (k = listCol[j].begin(); k != listCol[j].end(); k++) { | 
 |           Index jk = firstElt(*k);  // First element to use in the column | 
 |           eigen_internal_assert(rowIdx[jk] == j); | 
 |           Scalar v_j_jk = numext::conj(vals[jk]); | 
 |  | 
 |           jk += 1; | 
 |           for (Index i = jk; i < colPtr[*k + 1]; i++) { | 
 |             StorageIndex l = rowIdx[i]; | 
 |             if (col_pattern[l] < 0) { | 
 |               col_vals(col_nnz) = vals[i] * v_j_jk; | 
 |               col_irow[col_nnz] = l; | 
 |               col_pattern(l) = col_nnz; | 
 |               col_nnz++; | 
 |             } else | 
 |               col_vals(col_pattern[l]) -= vals[i] * v_j_jk; | 
 |           } | 
 |           updateList(colPtr, rowIdx, vals, *k, jk, firstElt, listCol); | 
 |         } | 
 |       } | 
 |  | 
 |       // Scale the current column | 
 |       if (numext::real(diag) <= 0) { | 
 |         if (++iter >= 10) return; | 
 |  | 
 |         // increase shift | 
 |         m_shift = numext::maxi(m_initialShift, RealScalar(2) * m_shift); | 
 |         // restore m_L, col_pattern, and listCol | 
 |         vals = Map<const VectorSx>(L_save.valuePtr(), nnz); | 
 |         rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz); | 
 |         colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n + 1); | 
 |         col_pattern.fill(-1); | 
 |         for (Index i = 0; i < n; ++i) listCol[i].clear(); | 
 |  | 
 |         break; | 
 |       } | 
 |  | 
 |       RealScalar rdiag = sqrt(numext::real(diag)); | 
 |       vals[colPtr[j]] = rdiag; | 
 |       for (Index k = 0; k < col_nnz; ++k) { | 
 |         Index i = col_irow[k]; | 
 |         // Scale | 
 |         col_vals(k) /= rdiag; | 
 |         // Update the remaining diagonals with col_vals | 
 |         vals[colPtr[i]] -= numext::abs2(col_vals(k)); | 
 |       } | 
 |       // Select the largest p elements | 
 |       // p is the original number of elements in the column (without the diagonal) | 
 |       Index p = colPtr[j + 1] - colPtr[j] - 1; | 
 |       Ref<VectorSx> cvals = col_vals.head(col_nnz); | 
 |       Ref<VectorIx> cirow = col_irow.head(col_nnz); | 
 |       internal::QuickSplit(cvals, cirow, p); | 
 |       // Insert the largest p elements in the matrix | 
 |       Index cpt = 0; | 
 |       for (Index i = colPtr[j] + 1; i < colPtr[j + 1]; i++) { | 
 |         vals[i] = col_vals(cpt); | 
 |         rowIdx[i] = col_irow(cpt); | 
 |         // restore col_pattern: | 
 |         col_pattern(col_irow(cpt)) = -1; | 
 |         cpt++; | 
 |       } | 
 |       // Get the first smallest row index and put it after the diagonal element | 
 |       Index jk = colPtr(j) + 1; | 
 |       updateList(colPtr, rowIdx, vals, j, jk, firstElt, listCol); | 
 |     } | 
 |  | 
 |     if (j == n) { | 
 |       m_factorizationIsOk = true; | 
 |       m_info = Success; | 
 |     } | 
 |   } while (m_info != Success); | 
 | } | 
 |  | 
 | template <typename Scalar, int UpLo_, typename OrderingType> | 
 | inline void IncompleteCholesky<Scalar, UpLo_, OrderingType>::updateList(Ref<const VectorIx> colPtr, | 
 |                                                                         Ref<VectorIx> rowIdx, Ref<VectorSx> vals, | 
 |                                                                         const Index& col, const Index& jk, | 
 |                                                                         VectorIx& firstElt, VectorList& listCol) { | 
 |   if (jk < colPtr(col + 1)) { | 
 |     Index p = colPtr(col + 1) - jk; | 
 |     Index minpos; | 
 |     rowIdx.segment(jk, p).minCoeff(&minpos); | 
 |     minpos += jk; | 
 |     if (rowIdx(minpos) != rowIdx(jk)) { | 
 |       // Swap | 
 |       std::swap(rowIdx(jk), rowIdx(minpos)); | 
 |       std::swap(vals(jk), vals(minpos)); | 
 |     } | 
 |     firstElt(col) = internal::convert_index<StorageIndex, Index>(jk); | 
 |     listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex, Index>(col)); | 
 |   } | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif |