| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_JACOBI_H | 
 | #define EIGEN_JACOBI_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /** \ingroup Jacobi_Module | 
 |  * \jacobi_module | 
 |  * \class JacobiRotation | 
 |  * \brief Rotation given by a cosine-sine pair. | 
 |  * | 
 |  * This class represents a Jacobi or Givens rotation. | 
 |  * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by | 
 |  * its cosine \c c and sine \c s as follow: | 
 |  * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s  & \overline c \end{array} \right ) \f$ | 
 |  * | 
 |  * You can apply the respective counter-clockwise rotation to a column vector \c v by | 
 |  * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: | 
 |  * \code | 
 |  * v.applyOnTheLeft(J.adjoint()); | 
 |  * \endcode | 
 |  * | 
 |  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
 |  */ | 
 | template <typename Scalar> | 
 | class JacobiRotation { | 
 |  public: | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   /** Default constructor without any initialization. */ | 
 |   EIGEN_DEVICE_FUNC JacobiRotation() {} | 
 |  | 
 |   /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ | 
 |   EIGEN_DEVICE_FUNC JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} | 
 |  | 
 |   EIGEN_DEVICE_FUNC Scalar& c() { return m_c; } | 
 |   EIGEN_DEVICE_FUNC Scalar c() const { return m_c; } | 
 |   EIGEN_DEVICE_FUNC Scalar& s() { return m_s; } | 
 |   EIGEN_DEVICE_FUNC Scalar s() const { return m_s; } | 
 |  | 
 |   /** Concatenates two planar rotation */ | 
 |   EIGEN_DEVICE_FUNC JacobiRotation operator*(const JacobiRotation& other) { | 
 |     using numext::conj; | 
 |     return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s, | 
 |                           conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c))); | 
 |   } | 
 |  | 
 |   /** Returns the transposed transformation */ | 
 |   EIGEN_DEVICE_FUNC JacobiRotation transpose() const { | 
 |     using numext::conj; | 
 |     return JacobiRotation(m_c, -conj(m_s)); | 
 |   } | 
 |  | 
 |   /** Returns the adjoint transformation */ | 
 |   EIGEN_DEVICE_FUNC JacobiRotation adjoint() const { | 
 |     using numext::conj; | 
 |     return JacobiRotation(conj(m_c), -m_s); | 
 |   } | 
 |  | 
 |   template <typename Derived> | 
 |   EIGEN_DEVICE_FUNC bool makeJacobi(const MatrixBase<Derived>&, Index p, Index q); | 
 |   EIGEN_DEVICE_FUNC bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z); | 
 |  | 
 |   EIGEN_DEVICE_FUNC void makeGivens(const Scalar& p, const Scalar& q, Scalar* r = 0); | 
 |  | 
 |  protected: | 
 |   EIGEN_DEVICE_FUNC void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type); | 
 |   EIGEN_DEVICE_FUNC void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type); | 
 |  | 
 |   Scalar m_c, m_s; | 
 | }; | 
 |  | 
 | /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint | 
 |  * 2x2 matrix \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal | 
 |  * matrix \f$ A = J^* B J \f$ | 
 |  * | 
 |  * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), | 
 |  * MatrixBase::applyOnTheRight() | 
 |  */ | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC bool JacobiRotation<Scalar>::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z) { | 
 |   using std::abs; | 
 |   using std::sqrt; | 
 |  | 
 |   RealScalar deno = RealScalar(2) * abs(y); | 
 |   if (deno < (std::numeric_limits<RealScalar>::min)()) { | 
 |     m_c = Scalar(1); | 
 |     m_s = Scalar(0); | 
 |     return false; | 
 |   } else { | 
 |     RealScalar tau = (x - z) / deno; | 
 |     RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); | 
 |     RealScalar t; | 
 |     if (tau > RealScalar(0)) { | 
 |       t = RealScalar(1) / (tau + w); | 
 |     } else { | 
 |       t = RealScalar(1) / (tau - w); | 
 |     } | 
 |     RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); | 
 |     RealScalar n = RealScalar(1) / sqrt(numext::abs2(t) + RealScalar(1)); | 
 |     m_s = -sign_t * (numext::conj(y) / abs(y)) * abs(t) * n; | 
 |     m_c = n; | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 | 
 |  * selfadjoint matrix \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & | 
 |  * \text{this}_{qq} \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ | 
 |  * | 
 |  * Example: \include Jacobi_makeJacobi.cpp | 
 |  * Output: \verbinclude Jacobi_makeJacobi.out | 
 |  * | 
 |  * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), | 
 |  * MatrixBase::applyOnTheRight() | 
 |  */ | 
 | template <typename Scalar> | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, Index p, Index q) { | 
 |   return makeJacobi(numext::real(m.coeff(p, p)), m.coeff(p, q), numext::real(m.coeff(q, q))); | 
 | } | 
 |  | 
 | /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector | 
 |  * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: | 
 |  * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. | 
 |  * | 
 |  * The value of \a r is returned if \a r is not null (the default is null). | 
 |  * Also note that G is built such that the cosine is always real. | 
 |  * | 
 |  * Example: \include Jacobi_makeGivens.cpp | 
 |  * Output: \verbinclude Jacobi_makeGivens.out | 
 |  * | 
 |  * This function implements the continuous Givens rotation generation algorithm | 
 |  * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. | 
 |  * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. | 
 |  * | 
 |  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
 |  */ | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r) { | 
 |   makeGivens(p, q, r, std::conditional_t<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>()); | 
 | } | 
 |  | 
 | // specialization for complexes | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, | 
 |                                                           internal::true_type) { | 
 |   using numext::conj; | 
 |   using std::abs; | 
 |   using std::sqrt; | 
 |  | 
 |   if (q == Scalar(0)) { | 
 |     m_c = numext::real(p) < 0 ? Scalar(-1) : Scalar(1); | 
 |     m_s = 0; | 
 |     if (r) *r = m_c * p; | 
 |   } else if (p == Scalar(0)) { | 
 |     m_c = 0; | 
 |     m_s = -q / abs(q); | 
 |     if (r) *r = abs(q); | 
 |   } else { | 
 |     RealScalar p1 = numext::norm1(p); | 
 |     RealScalar q1 = numext::norm1(q); | 
 |     if (p1 >= q1) { | 
 |       Scalar ps = p / p1; | 
 |       RealScalar p2 = numext::abs2(ps); | 
 |       Scalar qs = q / p1; | 
 |       RealScalar q2 = numext::abs2(qs); | 
 |  | 
 |       RealScalar u = sqrt(RealScalar(1) + q2 / p2); | 
 |       if (numext::real(p) < RealScalar(0)) u = -u; | 
 |  | 
 |       m_c = Scalar(1) / u; | 
 |       m_s = -qs * conj(ps) * (m_c / p2); | 
 |       if (r) *r = p * u; | 
 |     } else { | 
 |       Scalar ps = p / q1; | 
 |       RealScalar p2 = numext::abs2(ps); | 
 |       Scalar qs = q / q1; | 
 |       RealScalar q2 = numext::abs2(qs); | 
 |  | 
 |       RealScalar u = q1 * sqrt(p2 + q2); | 
 |       if (numext::real(p) < RealScalar(0)) u = -u; | 
 |  | 
 |       p1 = abs(p); | 
 |       ps = p / p1; | 
 |       m_c = p1 / u; | 
 |       m_s = -conj(ps) * (q / u); | 
 |       if (r) *r = ps * u; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // specialization for reals | 
 | template <typename Scalar> | 
 | EIGEN_DEVICE_FUNC void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, | 
 |                                                           internal::false_type) { | 
 |   using std::abs; | 
 |   using std::sqrt; | 
 |   if (numext::is_exactly_zero(q)) { | 
 |     m_c = p < Scalar(0) ? Scalar(-1) : Scalar(1); | 
 |     m_s = Scalar(0); | 
 |     if (r) *r = abs(p); | 
 |   } else if (numext::is_exactly_zero(p)) { | 
 |     m_c = Scalar(0); | 
 |     m_s = q < Scalar(0) ? Scalar(1) : Scalar(-1); | 
 |     if (r) *r = abs(q); | 
 |   } else if (abs(p) > abs(q)) { | 
 |     Scalar t = q / p; | 
 |     Scalar u = sqrt(Scalar(1) + numext::abs2(t)); | 
 |     if (p < Scalar(0)) u = -u; | 
 |     m_c = Scalar(1) / u; | 
 |     m_s = -t * m_c; | 
 |     if (r) *r = p * u; | 
 |   } else { | 
 |     Scalar t = p / q; | 
 |     Scalar u = sqrt(Scalar(1) + numext::abs2(t)); | 
 |     if (q < Scalar(0)) u = -u; | 
 |     m_s = -Scalar(1) / u; | 
 |     m_c = -t * m_s; | 
 |     if (r) *r = q * u; | 
 |   } | 
 | } | 
 |  | 
 | /**************************************************************************************** | 
 |  *   Implementation of MatrixBase methods | 
 |  ****************************************************************************************/ | 
 |  | 
 | namespace internal { | 
 | /** \jacobi_module | 
 |  * Applies the clock wise 2D rotation \a j to the set of 2D vectors of coordinates \a x and \a y: | 
 |  * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right )  =  J \left ( \begin{array}{cc} x \\ y \end{array} \right ) | 
 |  * \f$ | 
 |  * | 
 |  * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
 |  */ | 
 | template <typename VectorX, typename VectorY, typename OtherScalar> | 
 | EIGEN_DEVICE_FUNC void apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, | 
 |                                                    const JacobiRotation<OtherScalar>& j); | 
 | }  // namespace internal | 
 |  | 
 | /** \jacobi_module | 
 |  * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, | 
 |  * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. | 
 |  * | 
 |  * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() | 
 |  */ | 
 | template <typename Derived> | 
 | template <typename OtherScalar> | 
 | EIGEN_DEVICE_FUNC inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, | 
 |                                                                   const JacobiRotation<OtherScalar>& j) { | 
 |   RowXpr x(this->row(p)); | 
 |   RowXpr y(this->row(q)); | 
 |   internal::apply_rotation_in_the_plane(x, y, j); | 
 | } | 
 |  | 
 | /** \jacobi_module | 
 |  * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J | 
 |  * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. | 
 |  * | 
 |  * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() | 
 |  */ | 
 | template <typename Derived> | 
 | template <typename OtherScalar> | 
 | EIGEN_DEVICE_FUNC inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, | 
 |                                                                    const JacobiRotation<OtherScalar>& j) { | 
 |   ColXpr x(this->col(p)); | 
 |   ColXpr y(this->col(q)); | 
 |   internal::apply_rotation_in_the_plane(x, y, j.transpose()); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename Scalar, typename OtherScalar, int SizeAtCompileTime, int MinAlignment, bool Vectorizable> | 
 | struct apply_rotation_in_the_plane_selector { | 
 |   static EIGEN_DEVICE_FUNC inline void run(Scalar* x, Index incrx, Scalar* y, Index incry, Index size, OtherScalar c, | 
 |                                            OtherScalar s) { | 
 |     for (Index i = 0; i < size; ++i) { | 
 |       Scalar xi = *x; | 
 |       Scalar yi = *y; | 
 |       *x = c * xi + numext::conj(s) * yi; | 
 |       *y = -s * xi + numext::conj(c) * yi; | 
 |       x += incrx; | 
 |       y += incry; | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Scalar, typename OtherScalar, int SizeAtCompileTime, int MinAlignment> | 
 | struct apply_rotation_in_the_plane_selector<Scalar, OtherScalar, SizeAtCompileTime, MinAlignment, | 
 |                                             true /* vectorizable */> { | 
 |   static inline void run(Scalar* x, Index incrx, Scalar* y, Index incry, Index size, OtherScalar c, OtherScalar s) { | 
 |     typedef typename packet_traits<Scalar>::type Packet; | 
 |     typedef typename packet_traits<OtherScalar>::type OtherPacket; | 
 |  | 
 |     constexpr int RequiredAlignment = | 
 |         (std::max)(unpacket_traits<Packet>::alignment, unpacket_traits<OtherPacket>::alignment); | 
 |     constexpr Index PacketSize = packet_traits<Scalar>::size; | 
 |  | 
 |     /*** dynamic-size vectorized paths ***/ | 
 |     if (size >= 2 * PacketSize && SizeAtCompileTime == Dynamic && ((incrx == 1 && incry == 1) || PacketSize == 1)) { | 
 |       // both vectors are sequentially stored in memory => vectorization | 
 |       constexpr Index Peeling = 2; | 
 |  | 
 |       Index alignedStart = internal::first_default_aligned(y, size); | 
 |       Index alignedEnd = alignedStart + ((size - alignedStart) / PacketSize) * PacketSize; | 
 |  | 
 |       const OtherPacket pc = pset1<OtherPacket>(c); | 
 |       const OtherPacket ps = pset1<OtherPacket>(s); | 
 |       conj_helper<OtherPacket, Packet, NumTraits<OtherScalar>::IsComplex, false> pcj; | 
 |       conj_helper<OtherPacket, Packet, false, false> pm; | 
 |  | 
 |       for (Index i = 0; i < alignedStart; ++i) { | 
 |         Scalar xi = x[i]; | 
 |         Scalar yi = y[i]; | 
 |         x[i] = c * xi + numext::conj(s) * yi; | 
 |         y[i] = -s * xi + numext::conj(c) * yi; | 
 |       } | 
 |  | 
 |       Scalar* EIGEN_RESTRICT px = x + alignedStart; | 
 |       Scalar* EIGEN_RESTRICT py = y + alignedStart; | 
 |  | 
 |       if (internal::first_default_aligned(x, size) == alignedStart) { | 
 |         for (Index i = alignedStart; i < alignedEnd; i += PacketSize) { | 
 |           Packet xi = pload<Packet>(px); | 
 |           Packet yi = pload<Packet>(py); | 
 |           pstore(px, padd(pm.pmul(pc, xi), pcj.pmul(ps, yi))); | 
 |           pstore(py, psub(pcj.pmul(pc, yi), pm.pmul(ps, xi))); | 
 |           px += PacketSize; | 
 |           py += PacketSize; | 
 |         } | 
 |       } else { | 
 |         Index peelingEnd = alignedStart + ((size - alignedStart) / (Peeling * PacketSize)) * (Peeling * PacketSize); | 
 |         for (Index i = alignedStart; i < peelingEnd; i += Peeling * PacketSize) { | 
 |           Packet xi = ploadu<Packet>(px); | 
 |           Packet xi1 = ploadu<Packet>(px + PacketSize); | 
 |           Packet yi = pload<Packet>(py); | 
 |           Packet yi1 = pload<Packet>(py + PacketSize); | 
 |           pstoreu(px, padd(pm.pmul(pc, xi), pcj.pmul(ps, yi))); | 
 |           pstoreu(px + PacketSize, padd(pm.pmul(pc, xi1), pcj.pmul(ps, yi1))); | 
 |           pstore(py, psub(pcj.pmul(pc, yi), pm.pmul(ps, xi))); | 
 |           pstore(py + PacketSize, psub(pcj.pmul(pc, yi1), pm.pmul(ps, xi1))); | 
 |           px += Peeling * PacketSize; | 
 |           py += Peeling * PacketSize; | 
 |         } | 
 |         if (alignedEnd != peelingEnd) { | 
 |           Packet xi = ploadu<Packet>(x + peelingEnd); | 
 |           Packet yi = pload<Packet>(y + peelingEnd); | 
 |           pstoreu(x + peelingEnd, padd(pm.pmul(pc, xi), pcj.pmul(ps, yi))); | 
 |           pstore(y + peelingEnd, psub(pcj.pmul(pc, yi), pm.pmul(ps, xi))); | 
 |         } | 
 |       } | 
 |  | 
 |       for (Index i = alignedEnd; i < size; ++i) { | 
 |         Scalar xi = x[i]; | 
 |         Scalar yi = y[i]; | 
 |         x[i] = c * xi + numext::conj(s) * yi; | 
 |         y[i] = -s * xi + numext::conj(c) * yi; | 
 |       } | 
 |     } | 
 |  | 
 |     /*** fixed-size vectorized path ***/ | 
 |     else if (SizeAtCompileTime != Dynamic && MinAlignment >= RequiredAlignment) { | 
 |       const OtherPacket pc = pset1<OtherPacket>(c); | 
 |       const OtherPacket ps = pset1<OtherPacket>(s); | 
 |       conj_helper<OtherPacket, Packet, NumTraits<OtherScalar>::IsComplex, false> pcj; | 
 |       conj_helper<OtherPacket, Packet, false, false> pm; | 
 |       Scalar* EIGEN_RESTRICT px = x; | 
 |       Scalar* EIGEN_RESTRICT py = y; | 
 |       for (Index i = 0; i < size; i += PacketSize) { | 
 |         Packet xi = pload<Packet>(px); | 
 |         Packet yi = pload<Packet>(py); | 
 |         pstore(px, padd(pm.pmul(pc, xi), pcj.pmul(ps, yi))); | 
 |         pstore(py, psub(pcj.pmul(pc, yi), pm.pmul(ps, xi))); | 
 |         px += PacketSize; | 
 |         py += PacketSize; | 
 |       } | 
 |     } | 
 |  | 
 |     /*** non-vectorized path ***/ | 
 |     else { | 
 |       apply_rotation_in_the_plane_selector<Scalar, OtherScalar, SizeAtCompileTime, MinAlignment, false>::run( | 
 |           x, incrx, y, incry, size, c, s); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template <typename VectorX, typename VectorY, typename OtherScalar> | 
 | EIGEN_DEVICE_FUNC void inline apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x, DenseBase<VectorY>& xpr_y, | 
 |                                                           const JacobiRotation<OtherScalar>& j) { | 
 |   typedef typename VectorX::Scalar Scalar; | 
 |   constexpr bool Vectorizable = (int(evaluator<VectorX>::Flags) & int(evaluator<VectorY>::Flags) & PacketAccessBit) && | 
 |                                 (int(packet_traits<Scalar>::size) == int(packet_traits<OtherScalar>::size)); | 
 |  | 
 |   eigen_assert(xpr_x.size() == xpr_y.size()); | 
 |   Index size = xpr_x.size(); | 
 |   Index incrx = xpr_x.derived().innerStride(); | 
 |   Index incry = xpr_y.derived().innerStride(); | 
 |  | 
 |   Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0); | 
 |   Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0); | 
 |  | 
 |   OtherScalar c = j.c(); | 
 |   OtherScalar s = j.s(); | 
 |   if (numext::is_exactly_one(c) && numext::is_exactly_zero(s)) return; | 
 |  | 
 |   constexpr int Alignment = (std::min)(int(evaluator<VectorX>::Alignment), int(evaluator<VectorY>::Alignment)); | 
 |   apply_rotation_in_the_plane_selector<Scalar, OtherScalar, VectorX::SizeAtCompileTime, Alignment, Vectorizable>::run( | 
 |       x, incrx, y, incry, size, c, s); | 
 | } | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_JACOBI_H |