| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_PASTIXSUPPORT_H | 
 | #define EIGEN_PASTIXSUPPORT_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | #if defined(DCOMPLEX) | 
 | #define PASTIX_COMPLEX COMPLEX | 
 | #define PASTIX_DCOMPLEX DCOMPLEX | 
 | #else | 
 | #define PASTIX_COMPLEX std::complex<float> | 
 | #define PASTIX_DCOMPLEX std::complex<double> | 
 | #endif | 
 |  | 
 | /** \ingroup PaStiXSupport_Module | 
 |  * \brief Interface to the PaStix solver | 
 |  * | 
 |  * This class is used to solve the linear systems A.X = B via the PaStix library. | 
 |  * The matrix can be either real or complex, symmetric or not. | 
 |  * | 
 |  * \sa TutorialSparseDirectSolvers | 
 |  */ | 
 | template <typename MatrixType_, bool IsStrSym = false> | 
 | class PastixLU; | 
 | template <typename MatrixType_, int Options> | 
 | class PastixLLT; | 
 | template <typename MatrixType_, int Options> | 
 | class PastixLDLT; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <class Pastix> | 
 | struct pastix_traits; | 
 |  | 
 | template <typename MatrixType_> | 
 | struct pastix_traits<PastixLU<MatrixType_> > { | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef typename MatrixType_::Scalar Scalar; | 
 |   typedef typename MatrixType_::RealScalar RealScalar; | 
 |   typedef typename MatrixType_::StorageIndex StorageIndex; | 
 | }; | 
 |  | 
 | template <typename MatrixType_, int Options> | 
 | struct pastix_traits<PastixLLT<MatrixType_, Options> > { | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef typename MatrixType_::Scalar Scalar; | 
 |   typedef typename MatrixType_::RealScalar RealScalar; | 
 |   typedef typename MatrixType_::StorageIndex StorageIndex; | 
 | }; | 
 |  | 
 | template <typename MatrixType_, int Options> | 
 | struct pastix_traits<PastixLDLT<MatrixType_, Options> > { | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef typename MatrixType_::Scalar Scalar; | 
 |   typedef typename MatrixType_::RealScalar RealScalar; | 
 |   typedef typename MatrixType_::StorageIndex StorageIndex; | 
 | }; | 
 |  | 
 | inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, | 
 |                          int *perm, int *invp, float *x, int nbrhs, int *iparm, double *dparm) { | 
 |   if (n == 0) { | 
 |     ptr = NULL; | 
 |     idx = NULL; | 
 |     vals = NULL; | 
 |   } | 
 |   if (nbrhs == 0) { | 
 |     x = NULL; | 
 |     nbrhs = 1; | 
 |   } | 
 |   s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); | 
 | } | 
 |  | 
 | inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, | 
 |                          int *perm, int *invp, double *x, int nbrhs, int *iparm, double *dparm) { | 
 |   if (n == 0) { | 
 |     ptr = NULL; | 
 |     idx = NULL; | 
 |     vals = NULL; | 
 |   } | 
 |   if (nbrhs == 0) { | 
 |     x = NULL; | 
 |     nbrhs = 1; | 
 |   } | 
 |   d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); | 
 | } | 
 |  | 
 | inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, | 
 |                          std::complex<float> *vals, int *perm, int *invp, std::complex<float> *x, int nbrhs, int *iparm, | 
 |                          double *dparm) { | 
 |   if (n == 0) { | 
 |     ptr = NULL; | 
 |     idx = NULL; | 
 |     vals = NULL; | 
 |   } | 
 |   if (nbrhs == 0) { | 
 |     x = NULL; | 
 |     nbrhs = 1; | 
 |   } | 
 |   c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_COMPLEX *>(vals), perm, invp, | 
 |            reinterpret_cast<PASTIX_COMPLEX *>(x), nbrhs, iparm, dparm); | 
 | } | 
 |  | 
 | inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, | 
 |                          std::complex<double> *vals, int *perm, int *invp, std::complex<double> *x, int nbrhs, | 
 |                          int *iparm, double *dparm) { | 
 |   if (n == 0) { | 
 |     ptr = NULL; | 
 |     idx = NULL; | 
 |     vals = NULL; | 
 |   } | 
 |   if (nbrhs == 0) { | 
 |     x = NULL; | 
 |     nbrhs = 1; | 
 |   } | 
 |   z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast<PASTIX_DCOMPLEX *>(vals), perm, invp, | 
 |            reinterpret_cast<PASTIX_DCOMPLEX *>(x), nbrhs, iparm, dparm); | 
 | } | 
 |  | 
 | // Convert the matrix  to Fortran-style Numbering | 
 | template <typename MatrixType> | 
 | void c_to_fortran_numbering(MatrixType &mat) { | 
 |   if (!(mat.outerIndexPtr()[0])) { | 
 |     int i; | 
 |     for (i = 0; i <= mat.rows(); ++i) ++mat.outerIndexPtr()[i]; | 
 |     for (i = 0; i < mat.nonZeros(); ++i) ++mat.innerIndexPtr()[i]; | 
 |   } | 
 | } | 
 |  | 
 | // Convert to C-style Numbering | 
 | template <typename MatrixType> | 
 | void fortran_to_c_numbering(MatrixType &mat) { | 
 |   // Check the Numbering | 
 |   if (mat.outerIndexPtr()[0] == 1) {  // Convert to C-style numbering | 
 |     int i; | 
 |     for (i = 0; i <= mat.rows(); ++i) --mat.outerIndexPtr()[i]; | 
 |     for (i = 0; i < mat.nonZeros(); ++i) --mat.innerIndexPtr()[i]; | 
 |   } | 
 | } | 
 | }  // namespace internal | 
 |  | 
 | // This is the base class to interface with PaStiX functions. | 
 | // Users should not used this class directly. | 
 | template <class Derived> | 
 | class PastixBase : public SparseSolverBase<Derived> { | 
 |  protected: | 
 |   typedef SparseSolverBase<Derived> Base; | 
 |   using Base::derived; | 
 |   using Base::m_isInitialized; | 
 |  | 
 |  public: | 
 |   using Base::_solve_impl; | 
 |  | 
 |   typedef typename internal::pastix_traits<Derived>::MatrixType MatrixType_; | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   typedef typename MatrixType::StorageIndex StorageIndex; | 
 |   typedef Matrix<Scalar, Dynamic, 1> Vector; | 
 |   typedef SparseMatrix<Scalar, ColMajor> ColSpMatrix; | 
 |   enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; | 
 |  | 
 |  public: | 
 |   PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_pastixdata(0), m_size(0) { | 
 |     init(); | 
 |   } | 
 |  | 
 |   ~PastixBase() { clean(); } | 
 |  | 
 |   template <typename Rhs, typename Dest> | 
 |   bool _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const; | 
 |  | 
 |   /** Returns a reference to the integer vector IPARM of PaStiX parameters | 
 |    * to modify the default parameters. | 
 |    * The statistics related to the different phases of factorization and solve are saved here as well | 
 |    * \sa analyzePattern() factorize() | 
 |    */ | 
 |   Array<StorageIndex, IPARM_SIZE, 1> &iparm() { return m_iparm; } | 
 |  | 
 |   /** Return a reference to a particular index parameter of the IPARM vector | 
 |    * \sa iparm() | 
 |    */ | 
 |  | 
 |   int &iparm(int idxparam) { return m_iparm(idxparam); } | 
 |  | 
 |   /** Returns a reference to the double vector DPARM of PaStiX parameters | 
 |    * The statistics related to the different phases of factorization and solve are saved here as well | 
 |    * \sa analyzePattern() factorize() | 
 |    */ | 
 |   Array<double, DPARM_SIZE, 1> &dparm() { return m_dparm; } | 
 |  | 
 |   /** Return a reference to a particular index parameter of the DPARM vector | 
 |    * \sa dparm() | 
 |    */ | 
 |   double &dparm(int idxparam) { return m_dparm(idxparam); } | 
 |  | 
 |   inline Index cols() const { return m_size; } | 
 |   inline Index rows() const { return m_size; } | 
 |  | 
 |   /** \brief Reports whether previous computation was successful. | 
 |    * | 
 |    * \returns \c Success if computation was successful, | 
 |    *          \c NumericalIssue if the PaStiX reports a problem | 
 |    *          \c InvalidInput if the input matrix is invalid | 
 |    * | 
 |    * \sa iparm() | 
 |    */ | 
 |   ComputationInfo info() const { | 
 |     eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 |  protected: | 
 |   // Initialize the Pastix data structure, check the matrix | 
 |   void init(); | 
 |  | 
 |   // Compute the ordering and the symbolic factorization | 
 |   void analyzePattern(ColSpMatrix &mat); | 
 |  | 
 |   // Compute the numerical factorization | 
 |   void factorize(ColSpMatrix &mat); | 
 |  | 
 |   // Free all the data allocated by Pastix | 
 |   void clean() { | 
 |     eigen_assert(m_initisOk && "The Pastix structure should be allocated first"); | 
 |     m_iparm(IPARM_START_TASK) = API_TASK_CLEAN; | 
 |     m_iparm(IPARM_END_TASK) = API_TASK_CLEAN; | 
 |     internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar *)0, m_perm.data(), m_invp.data(), 0, 0, | 
 |                            m_iparm.data(), m_dparm.data()); | 
 |   } | 
 |  | 
 |   void compute(ColSpMatrix &mat); | 
 |  | 
 |   int m_initisOk; | 
 |   int m_analysisIsOk; | 
 |   int m_factorizationIsOk; | 
 |   mutable ComputationInfo m_info; | 
 |   mutable pastix_data_t *m_pastixdata;              // Data structure for pastix | 
 |   mutable int m_comm;                               // The MPI communicator identifier | 
 |   mutable Array<int, IPARM_SIZE, 1> m_iparm;        // integer vector for the input parameters | 
 |   mutable Array<double, DPARM_SIZE, 1> m_dparm;     // Scalar vector for the input parameters | 
 |   mutable Matrix<StorageIndex, Dynamic, 1> m_perm;  // Permutation vector | 
 |   mutable Matrix<StorageIndex, Dynamic, 1> m_invp;  // Inverse permutation vector | 
 |   mutable int m_size;                               // Size of the matrix | 
 | }; | 
 |  | 
 | /** Initialize the PaStiX data structure. | 
 |  *A first call to this function fills iparm and dparm with the default PaStiX parameters | 
 |  * \sa iparm() dparm() | 
 |  */ | 
 | template <class Derived> | 
 | void PastixBase<Derived>::init() { | 
 |   m_size = 0; | 
 |   m_iparm.setZero(IPARM_SIZE); | 
 |   m_dparm.setZero(DPARM_SIZE); | 
 |  | 
 |   m_iparm(IPARM_MODIFY_PARAMETER) = API_NO; | 
 |   pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, 0, 0, 0, 0, 1, m_iparm.data(), m_dparm.data()); | 
 |  | 
 |   m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO; | 
 |   m_iparm[IPARM_VERBOSE] = API_VERBOSE_NOT; | 
 |   m_iparm[IPARM_ORDERING] = API_ORDER_SCOTCH; | 
 |   m_iparm[IPARM_INCOMPLETE] = API_NO; | 
 |   m_iparm[IPARM_OOC_LIMIT] = 2000; | 
 |   m_iparm[IPARM_RHS_MAKING] = API_RHS_B; | 
 |   m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; | 
 |  | 
 |   m_iparm(IPARM_START_TASK) = API_TASK_INIT; | 
 |   m_iparm(IPARM_END_TASK) = API_TASK_INIT; | 
 |   internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar *)0, 0, 0, 0, 0, m_iparm.data(), | 
 |                          m_dparm.data()); | 
 |  | 
 |   // Check the returned error | 
 |   if (m_iparm(IPARM_ERROR_NUMBER)) { | 
 |     m_info = InvalidInput; | 
 |     m_initisOk = false; | 
 |   } else { | 
 |     m_info = Success; | 
 |     m_initisOk = true; | 
 |   } | 
 | } | 
 |  | 
 | template <class Derived> | 
 | void PastixBase<Derived>::compute(ColSpMatrix &mat) { | 
 |   eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared"); | 
 |  | 
 |   analyzePattern(mat); | 
 |   factorize(mat); | 
 |  | 
 |   m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; | 
 | } | 
 |  | 
 | template <class Derived> | 
 | void PastixBase<Derived>::analyzePattern(ColSpMatrix &mat) { | 
 |   eigen_assert(m_initisOk && "The initialization of PaSTiX failed"); | 
 |  | 
 |   // clean previous calls | 
 |   if (m_size > 0) clean(); | 
 |  | 
 |   m_size = internal::convert_index<int>(mat.rows()); | 
 |   m_perm.resize(m_size); | 
 |   m_invp.resize(m_size); | 
 |  | 
 |   m_iparm(IPARM_START_TASK) = API_TASK_ORDERING; | 
 |   m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE; | 
 |   internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), | 
 |                          mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); | 
 |  | 
 |   // Check the returned error | 
 |   if (m_iparm(IPARM_ERROR_NUMBER)) { | 
 |     m_info = NumericalIssue; | 
 |     m_analysisIsOk = false; | 
 |   } else { | 
 |     m_info = Success; | 
 |     m_analysisIsOk = true; | 
 |   } | 
 | } | 
 |  | 
 | template <class Derived> | 
 | void PastixBase<Derived>::factorize(ColSpMatrix &mat) { | 
 |   //   if(&m_cpyMat != &mat) m_cpyMat = mat; | 
 |   eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase"); | 
 |   m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT; | 
 |   m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT; | 
 |   m_size = internal::convert_index<int>(mat.rows()); | 
 |  | 
 |   internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), | 
 |                          mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); | 
 |  | 
 |   // Check the returned error | 
 |   if (m_iparm(IPARM_ERROR_NUMBER)) { | 
 |     m_info = NumericalIssue; | 
 |     m_factorizationIsOk = false; | 
 |     m_isInitialized = false; | 
 |   } else { | 
 |     m_info = Success; | 
 |     m_factorizationIsOk = true; | 
 |     m_isInitialized = true; | 
 |   } | 
 | } | 
 |  | 
 | /* Solve the system */ | 
 | template <typename Base> | 
 | template <typename Rhs, typename Dest> | 
 | bool PastixBase<Base>::_solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &x) const { | 
 |   eigen_assert(m_isInitialized && "The matrix should be factorized first"); | 
 |   EIGEN_STATIC_ASSERT((Dest::Flags & RowMajorBit) == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); | 
 |   int rhs = 1; | 
 |  | 
 |   x = b; /* on return, x is overwritten by the computed solution */ | 
 |  | 
 |   for (int i = 0; i < b.cols(); i++) { | 
 |     m_iparm[IPARM_START_TASK] = API_TASK_SOLVE; | 
 |     m_iparm[IPARM_END_TASK] = API_TASK_REFINE; | 
 |  | 
 |     internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, internal::convert_index<int>(x.rows()), 0, 0, 0, | 
 |                            m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data()); | 
 |   } | 
 |  | 
 |   // Check the returned error | 
 |   m_info = m_iparm(IPARM_ERROR_NUMBER) == 0 ? Success : NumericalIssue; | 
 |  | 
 |   return m_iparm(IPARM_ERROR_NUMBER) == 0; | 
 | } | 
 |  | 
 | /** \ingroup PaStiXSupport_Module | 
 |  * \class PastixLU | 
 |  * \brief Sparse direct LU solver based on PaStiX library | 
 |  * | 
 |  * This class is used to solve the linear systems A.X = B with a supernodal LU | 
 |  * factorization in the PaStiX library. The matrix A should be squared and nonsingular | 
 |  * PaStiX requires that the matrix A has a symmetric structural pattern. | 
 |  * This interface can symmetrize the input matrix otherwise. | 
 |  * The vectors or matrices X and B can be either dense or sparse. | 
 |  * | 
 |  * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |  * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false | 
 |  * NOTE : Note that if the analysis and factorization phase are called separately, | 
 |  * the input matrix will be symmetrized at each call, hence it is advised to | 
 |  * symmetrize the matrix in a end-user program and set \p IsStrSym to true | 
 |  * | 
 |  * \implsparsesolverconcept | 
 |  * | 
 |  * \sa \ref TutorialSparseSolverConcept, class SparseLU | 
 |  * | 
 |  */ | 
 | template <typename MatrixType_, bool IsStrSym> | 
 | class PastixLU : public PastixBase<PastixLU<MatrixType_> > { | 
 |  public: | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef PastixBase<PastixLU<MatrixType> > Base; | 
 |   typedef typename Base::ColSpMatrix ColSpMatrix; | 
 |   typedef typename MatrixType::StorageIndex StorageIndex; | 
 |  | 
 |  public: | 
 |   PastixLU() : Base() { init(); } | 
 |  | 
 |   explicit PastixLU(const MatrixType &matrix) : Base() { | 
 |     init(); | 
 |     compute(matrix); | 
 |   } | 
 |   /** Compute the LU supernodal factorization of \p matrix. | 
 |    * iparm and dparm can be used to tune the PaStiX parameters. | 
 |    * see the PaStiX user's manual | 
 |    * \sa analyzePattern() factorize() | 
 |    */ | 
 |   void compute(const MatrixType &matrix) { | 
 |     m_structureIsUptodate = false; | 
 |     ColSpMatrix temp; | 
 |     grabMatrix(matrix, temp); | 
 |     Base::compute(temp); | 
 |   } | 
 |   /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern. | 
 |    * Several ordering methods can be used at this step. See the PaStiX user's manual. | 
 |    * The result of this operation can be used with successive matrices having the same pattern as \p matrix | 
 |    * \sa factorize() | 
 |    */ | 
 |   void analyzePattern(const MatrixType &matrix) { | 
 |     m_structureIsUptodate = false; | 
 |     ColSpMatrix temp; | 
 |     grabMatrix(matrix, temp); | 
 |     Base::analyzePattern(temp); | 
 |   } | 
 |  | 
 |   /** Compute the LU supernodal factorization of \p matrix | 
 |    * WARNING The matrix \p matrix should have the same structural pattern | 
 |    * as the same used in the analysis phase. | 
 |    * \sa analyzePattern() | 
 |    */ | 
 |   void factorize(const MatrixType &matrix) { | 
 |     ColSpMatrix temp; | 
 |     grabMatrix(matrix, temp); | 
 |     Base::factorize(temp); | 
 |   } | 
 |  | 
 |  protected: | 
 |   void init() { | 
 |     m_structureIsUptodate = false; | 
 |     m_iparm(IPARM_SYM) = API_SYM_NO; | 
 |     m_iparm(IPARM_FACTORIZATION) = API_FACT_LU; | 
 |   } | 
 |  | 
 |   void grabMatrix(const MatrixType &matrix, ColSpMatrix &out) { | 
 |     if (IsStrSym) | 
 |       out = matrix; | 
 |     else { | 
 |       if (!m_structureIsUptodate) { | 
 |         // update the transposed structure | 
 |         m_transposedStructure = matrix.transpose(); | 
 |  | 
 |         // Set the elements of the matrix to zero | 
 |         for (Index j = 0; j < m_transposedStructure.outerSize(); ++j) | 
 |           for (typename ColSpMatrix::InnerIterator it(m_transposedStructure, j); it; ++it) it.valueRef() = 0.0; | 
 |  | 
 |         m_structureIsUptodate = true; | 
 |       } | 
 |  | 
 |       out = m_transposedStructure + matrix; | 
 |     } | 
 |     internal::c_to_fortran_numbering(out); | 
 |   } | 
 |  | 
 |   using Base::m_dparm; | 
 |   using Base::m_iparm; | 
 |  | 
 |   ColSpMatrix m_transposedStructure; | 
 |   bool m_structureIsUptodate; | 
 | }; | 
 |  | 
 | /** \ingroup PaStiXSupport_Module | 
 |  * \class PastixLLT | 
 |  * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library | 
 |  * | 
 |  * This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization | 
 |  * available in the PaStiX library. The matrix A should be symmetric and positive definite | 
 |  * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX | 
 |  * The vectors or matrices X and B can be either dense or sparse | 
 |  * | 
 |  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |  * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX | 
 |  * | 
 |  * \implsparsesolverconcept | 
 |  * | 
 |  * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT | 
 |  */ | 
 | template <typename MatrixType_, int UpLo_> | 
 | class PastixLLT : public PastixBase<PastixLLT<MatrixType_, UpLo_> > { | 
 |  public: | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef PastixBase<PastixLLT<MatrixType, UpLo_> > Base; | 
 |   typedef typename Base::ColSpMatrix ColSpMatrix; | 
 |  | 
 |  public: | 
 |   enum { UpLo = UpLo_ }; | 
 |   PastixLLT() : Base() { init(); } | 
 |  | 
 |   explicit PastixLLT(const MatrixType &matrix) : Base() { | 
 |     init(); | 
 |     compute(matrix); | 
 |   } | 
 |  | 
 |   /** Compute the L factor of the LL^T supernodal factorization of \p matrix | 
 |    * \sa analyzePattern() factorize() | 
 |    */ | 
 |   void compute(const MatrixType &matrix) { | 
 |     ColSpMatrix temp; | 
 |     grabMatrix(matrix, temp); | 
 |     Base::compute(temp); | 
 |   } | 
 |  | 
 |   /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern | 
 |    * The result of this operation can be used with successive matrices having the same pattern as \p matrix | 
 |    * \sa factorize() | 
 |    */ | 
 |   void analyzePattern(const MatrixType &matrix) { | 
 |     ColSpMatrix temp; | 
 |     grabMatrix(matrix, temp); | 
 |     Base::analyzePattern(temp); | 
 |   } | 
 |   /** Compute the LL^T supernodal numerical factorization of \p matrix | 
 |    * \sa analyzePattern() | 
 |    */ | 
 |   void factorize(const MatrixType &matrix) { | 
 |     ColSpMatrix temp; | 
 |     grabMatrix(matrix, temp); | 
 |     Base::factorize(temp); | 
 |   } | 
 |  | 
 |  protected: | 
 |   using Base::m_iparm; | 
 |  | 
 |   void init() { | 
 |     m_iparm(IPARM_SYM) = API_SYM_YES; | 
 |     m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT; | 
 |   } | 
 |  | 
 |   void grabMatrix(const MatrixType &matrix, ColSpMatrix &out) { | 
 |     out.resize(matrix.rows(), matrix.cols()); | 
 |     // Pastix supports only lower, column-major matrices | 
 |     out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>(); | 
 |     internal::c_to_fortran_numbering(out); | 
 |   } | 
 | }; | 
 |  | 
 | /** \ingroup PaStiXSupport_Module | 
 |  * \class PastixLDLT | 
 |  * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library | 
 |  * | 
 |  * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization | 
 |  * available in the PaStiX library. The matrix A should be symmetric and positive definite | 
 |  * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX | 
 |  * The vectors or matrices X and B can be either dense or sparse | 
 |  * | 
 |  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |  * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX | 
 |  * | 
 |  * \implsparsesolverconcept | 
 |  * | 
 |  * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT | 
 |  */ | 
 | template <typename MatrixType_, int UpLo_> | 
 | class PastixLDLT : public PastixBase<PastixLDLT<MatrixType_, UpLo_> > { | 
 |  public: | 
 |   typedef MatrixType_ MatrixType; | 
 |   typedef PastixBase<PastixLDLT<MatrixType, UpLo_> > Base; | 
 |   typedef typename Base::ColSpMatrix ColSpMatrix; | 
 |  | 
 |  public: | 
 |   enum { UpLo = UpLo_ }; | 
 |   PastixLDLT() : Base() { init(); } | 
 |  | 
 |   explicit PastixLDLT(const MatrixType &matrix) : Base() { | 
 |     init(); | 
 |     compute(matrix); | 
 |   } | 
 |  | 
 |   /** Compute the L and D factors of the LDL^T factorization of \p matrix | 
 |    * \sa analyzePattern() factorize() | 
 |    */ | 
 |   void compute(const MatrixType &matrix) { | 
 |     ColSpMatrix temp; | 
 |     grabMatrix(matrix, temp); | 
 |     Base::compute(temp); | 
 |   } | 
 |  | 
 |   /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern | 
 |    * The result of this operation can be used with successive matrices having the same pattern as \p matrix | 
 |    * \sa factorize() | 
 |    */ | 
 |   void analyzePattern(const MatrixType &matrix) { | 
 |     ColSpMatrix temp; | 
 |     grabMatrix(matrix, temp); | 
 |     Base::analyzePattern(temp); | 
 |   } | 
 |   /** Compute the LDL^T supernodal numerical factorization of \p matrix | 
 |    * | 
 |    */ | 
 |   void factorize(const MatrixType &matrix) { | 
 |     ColSpMatrix temp; | 
 |     grabMatrix(matrix, temp); | 
 |     Base::factorize(temp); | 
 |   } | 
 |  | 
 |  protected: | 
 |   using Base::m_iparm; | 
 |  | 
 |   void init() { | 
 |     m_iparm(IPARM_SYM) = API_SYM_YES; | 
 |     m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT; | 
 |   } | 
 |  | 
 |   void grabMatrix(const MatrixType &matrix, ColSpMatrix &out) { | 
 |     // Pastix supports only lower, column-major matrices | 
 |     out.resize(matrix.rows(), matrix.cols()); | 
 |     out.template selfadjointView<Lower>() = matrix.template selfadjointView<UpLo>(); | 
 |     internal::c_to_fortran_numbering(out); | 
 |   } | 
 | }; | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif |