|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H | 
|  | #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  | template <typename MatrixType_, typename PermutationIndex_> | 
|  | struct traits<ColPivHouseholderQR<MatrixType_, PermutationIndex_>> : traits<MatrixType_> { | 
|  | typedef MatrixXpr XprKind; | 
|  | typedef SolverStorage StorageKind; | 
|  | typedef PermutationIndex_ PermutationIndex; | 
|  | enum { Flags = 0 }; | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \ingroup QR_Module | 
|  | * | 
|  | * \class ColPivHouseholderQR | 
|  | * | 
|  | * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition | 
|  | * | 
|  | * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R | 
|  | * such that | 
|  | * \f[ | 
|  | *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} | 
|  | * \f] | 
|  | * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an | 
|  | * upper triangular matrix. | 
|  | * | 
|  | * This decomposition performs column pivoting in order to be rank-revealing and improve | 
|  | * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR. | 
|  | * | 
|  | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
|  | * | 
|  | * \sa MatrixBase::colPivHouseholderQr() | 
|  | */ | 
|  | template <typename MatrixType_, typename PermutationIndex_> | 
|  | class ColPivHouseholderQR : public SolverBase<ColPivHouseholderQR<MatrixType_, PermutationIndex_>> { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef SolverBase<ColPivHouseholderQR> Base; | 
|  | friend class SolverBase<ColPivHouseholderQR>; | 
|  | typedef PermutationIndex_ PermutationIndex; | 
|  | EIGEN_GENERIC_PUBLIC_INTERFACE(ColPivHouseholderQR) | 
|  |  | 
|  | enum { | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; | 
|  | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime, PermutationIndex> PermutationType; | 
|  | typedef typename internal::plain_row_type<MatrixType, PermutationIndex>::type IntRowVectorType; | 
|  | typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; | 
|  | typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType; | 
|  | typedef HouseholderSequence<MatrixType, internal::remove_all_t<typename HCoeffsType::ConjugateReturnType>> | 
|  | HouseholderSequenceType; | 
|  | typedef typename MatrixType::PlainObject PlainObject; | 
|  |  | 
|  | private: | 
|  | void init(Index rows, Index cols) { | 
|  | Index diag = numext::mini(rows, cols); | 
|  | m_hCoeffs.resize(diag); | 
|  | m_colsPermutation.resize(cols); | 
|  | m_colsTranspositions.resize(cols); | 
|  | m_temp.resize(cols); | 
|  | m_colNormsUpdated.resize(cols); | 
|  | m_colNormsDirect.resize(cols); | 
|  | m_isInitialized = false; | 
|  | m_usePrescribedThreshold = false; | 
|  | } | 
|  |  | 
|  | public: | 
|  | /** | 
|  | * \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). | 
|  | */ | 
|  | ColPivHouseholderQR() | 
|  | : m_qr(), | 
|  | m_hCoeffs(), | 
|  | m_colsPermutation(), | 
|  | m_colsTranspositions(), | 
|  | m_temp(), | 
|  | m_colNormsUpdated(), | 
|  | m_colNormsDirect(), | 
|  | m_isInitialized(false), | 
|  | m_usePrescribedThreshold(false) {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa ColPivHouseholderQR() | 
|  | */ | 
|  | ColPivHouseholderQR(Index rows, Index cols) : m_qr(rows, cols) { init(rows, cols); } | 
|  |  | 
|  | /** \brief Constructs a QR factorization from a given matrix | 
|  | * | 
|  | * This constructor computes the QR factorization of the matrix \a matrix by calling | 
|  | * the method compute(). It is a short cut for: | 
|  | * | 
|  | * \code | 
|  | * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); | 
|  | * qr.compute(matrix); | 
|  | * \endcode | 
|  | * | 
|  | * \sa compute() | 
|  | */ | 
|  | template <typename InputType> | 
|  | explicit ColPivHouseholderQR(const EigenBase<InputType>& matrix) : m_qr(matrix.rows(), matrix.cols()) { | 
|  | init(matrix.rows(), matrix.cols()); | 
|  | compute(matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \brief Constructs a QR factorization from a given matrix | 
|  | * | 
|  | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c | 
|  | * MatrixType is a Eigen::Ref. | 
|  | * | 
|  | * \sa ColPivHouseholderQR(const EigenBase&) | 
|  | */ | 
|  | template <typename InputType> | 
|  | explicit ColPivHouseholderQR(EigenBase<InputType>& matrix) : m_qr(matrix.derived()) { | 
|  | init(matrix.rows(), matrix.cols()); | 
|  | computeInPlace(); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which | 
|  | * *this is the QR decomposition, if any exists. | 
|  | * | 
|  | * \param b the right-hand-side of the equation to solve. | 
|  | * | 
|  | * \returns a solution. | 
|  | * | 
|  | * \note_about_checking_solutions | 
|  | * | 
|  | * \note_about_arbitrary_choice_of_solution | 
|  | * | 
|  | * Example: \include ColPivHouseholderQR_solve.cpp | 
|  | * Output: \verbinclude ColPivHouseholderQR_solve.out | 
|  | */ | 
|  | template <typename Rhs> | 
|  | inline const Solve<ColPivHouseholderQR, Rhs> solve(const MatrixBase<Rhs>& b) const; | 
|  | #endif | 
|  |  | 
|  | HouseholderSequenceType householderQ() const; | 
|  | HouseholderSequenceType matrixQ() const { return householderQ(); } | 
|  |  | 
|  | /** \returns a reference to the matrix where the Householder QR decomposition is stored | 
|  | */ | 
|  | const MatrixType& matrixQR() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return m_qr; | 
|  | } | 
|  |  | 
|  | /** \returns a reference to the matrix where the result Householder QR is stored | 
|  | * \warning The strict lower part of this matrix contains internal values. | 
|  | * Only the upper triangular part should be referenced. To get it, use | 
|  | * \code matrixR().template triangularView<Upper>() \endcode | 
|  | * For rank-deficient matrices, use | 
|  | * \code | 
|  | * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>() | 
|  | * \endcode | 
|  | */ | 
|  | const MatrixType& matrixR() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return m_qr; | 
|  | } | 
|  |  | 
|  | template <typename InputType> | 
|  | ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix); | 
|  |  | 
|  | /** \returns a const reference to the column permutation matrix */ | 
|  | const PermutationType& colsPermutation() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return m_colsPermutation; | 
|  | } | 
|  |  | 
|  | /** \returns the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * One way to work around that is to use logAbsDeterminant() instead. | 
|  | * | 
|  | * \sa absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::Scalar determinant() const; | 
|  |  | 
|  | /** \returns the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * One way to work around that is to use logAbsDeterminant() instead. | 
|  | * | 
|  | * \sa determinant(), logAbsDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar absDeterminant() const; | 
|  |  | 
|  | /** \returns the natural log of the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \note This method is useful to work around the risk of overflow/underflow that's inherent | 
|  | * to determinant computation. | 
|  | * | 
|  | * \sa determinant(), absDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::RealScalar logAbsDeterminant() const; | 
|  |  | 
|  | /** \returns the sign of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the QR decomposition has already been computed. | 
|  | * | 
|  | * \note This is only for square matrices. | 
|  | * | 
|  | * \note This method is useful to work around the risk of overflow/underflow that's inherent | 
|  | * to determinant computation. | 
|  | * | 
|  | * \sa determinant(), absDeterminant(), logAbsDeterminant(), MatrixBase::determinant() | 
|  | */ | 
|  | typename MatrixType::Scalar signDeterminant() const; | 
|  |  | 
|  | /** \returns the rank of the matrix of which *this is the QR decomposition. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline Index rank() const { | 
|  | using std::abs; | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); | 
|  | Index result = 0; | 
|  | for (Index i = 0; i < m_nonzero_pivots; ++i) result += (abs(m_qr.coeff(i, i)) > premultiplied_threshold); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline Index dimensionOfKernel() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return cols() - rank(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the QR decomposition represents an injective | 
|  | *          linear map, i.e. has trivial kernel; false otherwise. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isInjective() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return rank() == cols(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the QR decomposition represents a surjective | 
|  | *          linear map; false otherwise. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isSurjective() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return rank() == rows(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix of which *this is the QR decomposition is invertible. | 
|  | * | 
|  | * \note This method has to determine which pivots should be considered nonzero. | 
|  | *       For that, it uses the threshold value that you can control by calling | 
|  | *       setThreshold(const RealScalar&). | 
|  | */ | 
|  | inline bool isInvertible() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return isInjective() && isSurjective(); | 
|  | } | 
|  |  | 
|  | /** \returns the inverse of the matrix of which *this is the QR decomposition. | 
|  | * | 
|  | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. | 
|  | *       Use isInvertible() to first determine whether this matrix is invertible. | 
|  | */ | 
|  | inline const Inverse<ColPivHouseholderQR> inverse() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return Inverse<ColPivHouseholderQR>(*this); | 
|  | } | 
|  |  | 
|  | inline Index rows() const { return m_qr.rows(); } | 
|  | inline Index cols() const { return m_qr.cols(); } | 
|  |  | 
|  | /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. | 
|  | * | 
|  | * For advanced uses only. | 
|  | */ | 
|  | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } | 
|  |  | 
|  | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), | 
|  | * who need to determine when pivots are to be considered nonzero. This is not used for the | 
|  | * QR decomposition itself. | 
|  | * | 
|  | * When it needs to get the threshold value, Eigen calls threshold(). By default, this | 
|  | * uses a formula to automatically determine a reasonable threshold. | 
|  | * Once you have called the present method setThreshold(const RealScalar&), | 
|  | * your value is used instead. | 
|  | * | 
|  | * \param threshold The new value to use as the threshold. | 
|  | * | 
|  | * A pivot will be considered nonzero if its absolute value is strictly greater than | 
|  | *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ | 
|  | * where maxpivot is the biggest pivot. | 
|  | * | 
|  | * If you want to come back to the default behavior, call setThreshold(Default_t) | 
|  | */ | 
|  | ColPivHouseholderQR& setThreshold(const RealScalar& threshold) { | 
|  | m_usePrescribedThreshold = true; | 
|  | m_prescribedThreshold = threshold; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Allows to come back to the default behavior, letting Eigen use its default formula for | 
|  | * determining the threshold. | 
|  | * | 
|  | * You should pass the special object Eigen::Default as parameter here. | 
|  | * \code qr.setThreshold(Eigen::Default); \endcode | 
|  | * | 
|  | * See the documentation of setThreshold(const RealScalar&). | 
|  | */ | 
|  | ColPivHouseholderQR& setThreshold(Default_t) { | 
|  | m_usePrescribedThreshold = false; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Returns the threshold that will be used by certain methods such as rank(). | 
|  | * | 
|  | * See the documentation of setThreshold(const RealScalar&). | 
|  | */ | 
|  | RealScalar threshold() const { | 
|  | eigen_assert(m_isInitialized || m_usePrescribedThreshold); | 
|  | return m_usePrescribedThreshold ? m_prescribedThreshold | 
|  | // this formula comes from experimenting (see "LU precision tuning" thread on the | 
|  | // list) and turns out to be identical to Higham's formula used already in LDLt. | 
|  | : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize()); | 
|  | } | 
|  |  | 
|  | /** \returns the number of nonzero pivots in the QR decomposition. | 
|  | * Here nonzero is meant in the exact sense, not in a fuzzy sense. | 
|  | * So that notion isn't really intrinsically interesting, but it is | 
|  | * still useful when implementing algorithms. | 
|  | * | 
|  | * \sa rank() | 
|  | */ | 
|  | inline Index nonzeroPivots() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return m_nonzero_pivots; | 
|  | } | 
|  |  | 
|  | /** \returns the absolute value of the biggest pivot, i.e. the biggest | 
|  | *          diagonal coefficient of R. | 
|  | */ | 
|  | RealScalar maxPivot() const { return m_maxpivot; } | 
|  |  | 
|  | /** \brief Reports whether the QR factorization was successful. | 
|  | * | 
|  | * \note This function always returns \c Success. It is provided for compatibility | 
|  | * with other factorization routines. | 
|  | * \returns \c Success | 
|  | */ | 
|  | ComputationInfo info() const { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return Success; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template <typename RhsType, typename DstType> | 
|  | void _solve_impl(const RhsType& rhs, DstType& dst) const; | 
|  |  | 
|  | template <bool Conjugate, typename RhsType, typename DstType> | 
|  | void _solve_impl_transposed(const RhsType& rhs, DstType& dst) const; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | friend class CompleteOrthogonalDecomposition<MatrixType, PermutationIndex>; | 
|  |  | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  |  | 
|  | void computeInPlace(); | 
|  |  | 
|  | MatrixType m_qr; | 
|  | HCoeffsType m_hCoeffs; | 
|  | PermutationType m_colsPermutation; | 
|  | IntRowVectorType m_colsTranspositions; | 
|  | RowVectorType m_temp; | 
|  | RealRowVectorType m_colNormsUpdated; | 
|  | RealRowVectorType m_colNormsDirect; | 
|  | bool m_isInitialized, m_usePrescribedThreshold; | 
|  | RealScalar m_prescribedThreshold, m_maxpivot; | 
|  | Index m_nonzero_pivots; | 
|  | Index m_det_p; | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType, typename PermutationIndex> | 
|  | typename MatrixType::Scalar ColPivHouseholderQR<MatrixType, PermutationIndex>::determinant() const { | 
|  | eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
|  | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | Scalar detQ; | 
|  | internal::householder_determinant<HCoeffsType, Scalar, NumTraits<Scalar>::IsComplex>::run(m_hCoeffs, detQ); | 
|  | return isInjective() ? (detQ * Scalar(m_det_p)) * m_qr.diagonal().prod() : Scalar(0); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, typename PermutationIndex> | 
|  | typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType, PermutationIndex>::absDeterminant() const { | 
|  | using std::abs; | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return isInjective() ? abs(m_qr.diagonal().prod()) : RealScalar(0); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, typename PermutationIndex> | 
|  | typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType, PermutationIndex>::logAbsDeterminant() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | return isInjective() ? m_qr.diagonal().cwiseAbs().array().log().sum() : -NumTraits<RealScalar>::infinity(); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, typename PermutationIndex> | 
|  | typename MatrixType::Scalar ColPivHouseholderQR<MatrixType, PermutationIndex>::signDeterminant() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
|  | Scalar detQ; | 
|  | internal::householder_determinant<HCoeffsType, Scalar, NumTraits<Scalar>::IsComplex>::run(m_hCoeffs, detQ); | 
|  | return isInjective() ? (detQ * Scalar(m_det_p)) * m_qr.diagonal().array().sign().prod() : Scalar(0); | 
|  | } | 
|  |  | 
|  | /** Performs the QR factorization of the given matrix \a matrix. The result of | 
|  | * the factorization is stored into \c *this, and a reference to \c *this | 
|  | * is returned. | 
|  | * | 
|  | * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&) | 
|  | */ | 
|  | template <typename MatrixType, typename PermutationIndex> | 
|  | template <typename InputType> | 
|  | ColPivHouseholderQR<MatrixType, PermutationIndex>& ColPivHouseholderQR<MatrixType, PermutationIndex>::compute( | 
|  | const EigenBase<InputType>& matrix) { | 
|  | m_qr = matrix.derived(); | 
|  | computeInPlace(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, typename PermutationIndex> | 
|  | void ColPivHouseholderQR<MatrixType, PermutationIndex>::computeInPlace() { | 
|  | eigen_assert(m_qr.cols() <= NumTraits<PermutationIndex>::highest()); | 
|  |  | 
|  | using std::abs; | 
|  |  | 
|  | Index rows = m_qr.rows(); | 
|  | Index cols = m_qr.cols(); | 
|  | Index size = m_qr.diagonalSize(); | 
|  |  | 
|  | m_hCoeffs.resize(size); | 
|  |  | 
|  | m_temp.resize(cols); | 
|  |  | 
|  | m_colsTranspositions.resize(m_qr.cols()); | 
|  | Index number_of_transpositions = 0; | 
|  |  | 
|  | m_colNormsUpdated.resize(cols); | 
|  | m_colNormsDirect.resize(cols); | 
|  | for (Index k = 0; k < cols; ++k) { | 
|  | // colNormsDirect(k) caches the most recent directly computed norm of | 
|  | // column k. | 
|  | m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm(); | 
|  | m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k); | 
|  | } | 
|  |  | 
|  | RealScalar threshold_helper = | 
|  | numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows); | 
|  | RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon()); | 
|  |  | 
|  | m_nonzero_pivots = size;  // the generic case is that in which all pivots are nonzero (invertible case) | 
|  | m_maxpivot = RealScalar(0); | 
|  |  | 
|  | for (Index k = 0; k < size; ++k) { | 
|  | // first, we look up in our table m_colNormsUpdated which column has the biggest norm | 
|  | Index biggest_col_index; | 
|  | RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols - k).maxCoeff(&biggest_col_index)); | 
|  | biggest_col_index += k; | 
|  |  | 
|  | // Track the number of meaningful pivots but do not stop the decomposition to make | 
|  | // sure that the initial matrix is properly reproduced. See bug 941. | 
|  | if (m_nonzero_pivots == size && biggest_col_sq_norm < threshold_helper * RealScalar(rows - k)) m_nonzero_pivots = k; | 
|  |  | 
|  | // apply the transposition to the columns | 
|  | m_colsTranspositions.coeffRef(k) = static_cast<PermutationIndex>(biggest_col_index); | 
|  | if (k != biggest_col_index) { | 
|  | m_qr.col(k).swap(m_qr.col(biggest_col_index)); | 
|  | std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index)); | 
|  | std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index)); | 
|  | ++number_of_transpositions; | 
|  | } | 
|  |  | 
|  | // generate the householder vector, store it below the diagonal | 
|  | RealScalar beta; | 
|  | m_qr.col(k).tail(rows - k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); | 
|  |  | 
|  | // apply the householder transformation to the diagonal coefficient | 
|  | m_qr.coeffRef(k, k) = beta; | 
|  |  | 
|  | // remember the maximum absolute value of diagonal coefficients | 
|  | if (abs(beta) > m_maxpivot) m_maxpivot = abs(beta); | 
|  |  | 
|  | // apply the householder transformation | 
|  | m_qr.bottomRightCorner(rows - k, cols - k - 1) | 
|  | .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows - k - 1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k + 1)); | 
|  |  | 
|  | // update our table of norms of the columns | 
|  | for (Index j = k + 1; j < cols; ++j) { | 
|  | // The following implements the stable norm downgrade step discussed in | 
|  | // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf | 
|  | // and used in LAPACK routines xGEQPF and xGEQP3. | 
|  | // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html | 
|  | if (!numext::is_exactly_zero(m_colNormsUpdated.coeffRef(j))) { | 
|  | RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j); | 
|  | temp = (RealScalar(1) + temp) * (RealScalar(1) - temp); | 
|  | temp = temp < RealScalar(0) ? RealScalar(0) : temp; | 
|  | RealScalar temp2 = | 
|  | temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) / m_colNormsDirect.coeffRef(j)); | 
|  | if (temp2 <= norm_downdate_threshold) { | 
|  | // The updated norm has become too inaccurate so re-compute the column | 
|  | // norm directly. | 
|  | m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm(); | 
|  | m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j); | 
|  | } else { | 
|  | m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | m_colsPermutation.setIdentity(cols); | 
|  | for (Index k = 0; k < size /*m_nonzero_pivots*/; ++k) | 
|  | m_colsPermutation.applyTranspositionOnTheRight(k, static_cast<Index>(m_colsTranspositions.coeff(k))); | 
|  |  | 
|  | m_det_p = (number_of_transpositions % 2) ? -1 : 1; | 
|  | m_isInitialized = true; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template <typename MatrixType_, typename PermutationIndex_> | 
|  | template <typename RhsType, typename DstType> | 
|  | void ColPivHouseholderQR<MatrixType_, PermutationIndex_>::_solve_impl(const RhsType& rhs, DstType& dst) const { | 
|  | const Index nonzero_pivots = nonzeroPivots(); | 
|  |  | 
|  | if (nonzero_pivots == 0) { | 
|  | dst.setZero(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | typename RhsType::PlainObject c(rhs); | 
|  |  | 
|  | c.applyOnTheLeft(householderQ().setLength(nonzero_pivots).adjoint()); | 
|  |  | 
|  | m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) | 
|  | .template triangularView<Upper>() | 
|  | .solveInPlace(c.topRows(nonzero_pivots)); | 
|  |  | 
|  | for (Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i); | 
|  | for (Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero(); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType_, typename PermutationIndex_> | 
|  | template <bool Conjugate, typename RhsType, typename DstType> | 
|  | void ColPivHouseholderQR<MatrixType_, PermutationIndex_>::_solve_impl_transposed(const RhsType& rhs, | 
|  | DstType& dst) const { | 
|  | const Index nonzero_pivots = nonzeroPivots(); | 
|  |  | 
|  | if (nonzero_pivots == 0) { | 
|  | dst.setZero(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | typename RhsType::PlainObject c(m_colsPermutation.transpose() * rhs); | 
|  |  | 
|  | m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) | 
|  | .template triangularView<Upper>() | 
|  | .transpose() | 
|  | .template conjugateIf<Conjugate>() | 
|  | .solveInPlace(c.topRows(nonzero_pivots)); | 
|  |  | 
|  | dst.topRows(nonzero_pivots) = c.topRows(nonzero_pivots); | 
|  | dst.bottomRows(rows() - nonzero_pivots).setZero(); | 
|  |  | 
|  | dst.applyOnTheLeft(householderQ().setLength(nonzero_pivots).template conjugateIf<!Conjugate>()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename DstXprType, typename MatrixType, typename PermutationIndex> | 
|  | struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType, PermutationIndex>>, | 
|  | internal::assign_op<typename DstXprType::Scalar, | 
|  | typename ColPivHouseholderQR<MatrixType, PermutationIndex>::Scalar>, | 
|  | Dense2Dense> { | 
|  | typedef ColPivHouseholderQR<MatrixType, PermutationIndex> QrType; | 
|  | typedef Inverse<QrType> SrcXprType; | 
|  | static void run(DstXprType& dst, const SrcXprType& src, | 
|  | const internal::assign_op<typename DstXprType::Scalar, typename QrType::Scalar>&) { | 
|  | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \returns the matrix Q as a sequence of householder transformations. | 
|  | * You can extract the meaningful part only by using: | 
|  | * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/ | 
|  | template <typename MatrixType, typename PermutationIndex> | 
|  | typename ColPivHouseholderQR<MatrixType, PermutationIndex>::HouseholderSequenceType | 
|  | ColPivHouseholderQR<MatrixType, PermutationIndex>::householderQ() const { | 
|  | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); | 
|  | return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); | 
|  | } | 
|  |  | 
|  | /** \return the column-pivoting Householder QR decomposition of \c *this. | 
|  | * | 
|  | * \sa class ColPivHouseholderQR | 
|  | */ | 
|  | template <typename Derived> | 
|  | template <typename PermutationIndexType> | 
|  | const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject, PermutationIndexType> | 
|  | MatrixBase<Derived>::colPivHouseholderQr() const { | 
|  | return ColPivHouseholderQR<PlainObject, PermutationIndexType>(eval()); | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |