|  |  | 
|  | // g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && | 
|  | // ./a.out g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 | 
|  | // -DSIZE=2000 && ./a.out | 
|  | //  -DNOGMM -DNOMTL -DCSPARSE | 
|  | //  -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a | 
|  | #ifndef SIZE | 
|  | #define SIZE 100000 | 
|  | #endif | 
|  |  | 
|  | #ifndef NBPERROW | 
|  | #define NBPERROW 24 | 
|  | #endif | 
|  |  | 
|  | #ifndef REPEAT | 
|  | #define REPEAT 2 | 
|  | #endif | 
|  |  | 
|  | #ifndef NBTRIES | 
|  | #define NBTRIES 2 | 
|  | #endif | 
|  |  | 
|  | #ifndef KK | 
|  | #define KK 10 | 
|  | #endif | 
|  |  | 
|  | #ifndef NOGOOGLE | 
|  | #define EIGEN_GOOGLEHASH_SUPPORT | 
|  | #include <google/sparse_hash_map> | 
|  | #endif | 
|  |  | 
|  | #include "BenchSparseUtil.h" | 
|  |  | 
|  | #define CHECK_MEM | 
|  | // #define CHECK_MEM  std/**/::cout << "check mem\n"; getchar(); | 
|  |  | 
|  | #define BENCH(X)                          \ | 
|  | timer.reset();                          \ | 
|  | for (int _j = 0; _j < NBTRIES; ++_j) {  \ | 
|  | timer.start();                        \ | 
|  | for (int _k = 0; _k < REPEAT; ++_k) { \ | 
|  | X                                   \ | 
|  | }                                     \ | 
|  | timer.stop();                         \ | 
|  | } | 
|  |  | 
|  | typedef std::vector<Vector2i> Coordinates; | 
|  | typedef std::vector<float> Values; | 
|  |  | 
|  | EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals); | 
|  | EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords, const Values& vals); | 
|  |  | 
|  | int main(int argc, char* argv[]) { | 
|  | int rows = SIZE; | 
|  | int cols = SIZE; | 
|  | bool fullyrand = true; | 
|  |  | 
|  | BenchTimer timer; | 
|  | Coordinates coords; | 
|  | Values values; | 
|  | if (fullyrand) { | 
|  | Coordinates pool; | 
|  | pool.reserve(cols * NBPERROW); | 
|  | std::cerr << "fill pool" | 
|  | << "\n"; | 
|  | for (int i = 0; i < cols * NBPERROW;) { | 
|  | //       DynamicSparseMatrix<int> stencil(SIZE,SIZE); | 
|  | Vector2i ij(internal::random<int>(0, rows - 1), internal::random<int>(0, cols - 1)); | 
|  | //       if(stencil.coeffRef(ij.x(), ij.y())==0) | 
|  | { | 
|  | //         stencil.coeffRef(ij.x(), ij.y()) = 1; | 
|  | pool.push_back(ij); | 
|  | } | 
|  | ++i; | 
|  | } | 
|  | std::cerr << "pool ok" | 
|  | << "\n"; | 
|  | int n = cols * NBPERROW * KK; | 
|  | coords.reserve(n); | 
|  | values.reserve(n); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | int i = internal::random<int>(0, pool.size()); | 
|  | coords.push_back(pool[i]); | 
|  | values.push_back(internal::random<Scalar>()); | 
|  | } | 
|  | } else { | 
|  | for (int j = 0; j < cols; ++j) | 
|  | for (int i = 0; i < NBPERROW; ++i) { | 
|  | coords.push_back(Vector2i(internal::random<int>(0, rows - 1), j)); | 
|  | values.push_back(internal::random<Scalar>()); | 
|  | } | 
|  | } | 
|  | std::cout << "nnz = " << coords.size() << "\n"; | 
|  | CHECK_MEM | 
|  | // dense matrices | 
|  | #ifdef DENSEMATRIX | 
|  | { | 
|  | BENCH(setrand_eigen_dense(coords, values);) | 
|  | std::cout << "Eigen Dense\t" << timer.value() << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // eigen sparse matrices | 
|  | //     if (!fullyrand) | 
|  | //     { | 
|  | //       BENCH(setinnerrand_eigen(coords,values);) | 
|  | //       std::cout << "Eigen fillrand\t" << timer.value() << "\n"; | 
|  | //     } | 
|  | { | 
|  | BENCH(setrand_eigen_dynamic(coords, values);) | 
|  | std::cout << "Eigen dynamic\t" << timer.value() << "\n"; | 
|  | } | 
|  | //     { | 
|  | //       BENCH(setrand_eigen_compact(coords,values);) | 
|  | //       std::cout << "Eigen compact\t" << timer.value() << "\n"; | 
|  | //     } | 
|  | { | 
|  | BENCH(setrand_eigen_sumeq(coords, values);) | 
|  | std::cout << "Eigen sumeq\t" << timer.value() << "\n"; | 
|  | } | 
|  | { | 
|  | //       BENCH(setrand_eigen_gnu_hash(coords,values);) | 
|  | //       std::cout << "Eigen std::map\t" << timer.value() << "\n"; | 
|  | } | 
|  | { | 
|  | BENCH(setrand_scipy(coords, values);) | 
|  | std::cout << "scipy\t" << timer.value() << "\n"; | 
|  | } | 
|  | #ifndef NOGOOGLE | 
|  | { | 
|  | BENCH(setrand_eigen_google_dense(coords, values);) | 
|  | std::cout << "Eigen google dense\t" << timer.value() << "\n"; | 
|  | } | 
|  | { | 
|  | BENCH(setrand_eigen_google_sparse(coords, values);) | 
|  | std::cout << "Eigen google sparse\t" << timer.value() << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef NOUBLAS | 
|  | { | 
|  | //       BENCH(setrand_ublas_mapped(coords,values);) | 
|  | //       std::cout << "ublas mapped\t" << timer.value() << "\n"; | 
|  | } { | 
|  | BENCH(setrand_ublas_genvec(coords, values);) | 
|  | std::cout << "ublas vecofvec\t" << timer.value() << "\n"; | 
|  | } | 
|  | /*{ | 
|  | timer.reset(); | 
|  | timer.start(); | 
|  | for (int k=0; k<REPEAT; ++k) | 
|  | setrand_ublas_compressed(coords,values); | 
|  | timer.stop(); | 
|  | std::cout << "ublas comp\t" << timer.value() << "\n"; | 
|  | } | 
|  | { | 
|  | timer.reset(); | 
|  | timer.start(); | 
|  | for (int k=0; k<REPEAT; ++k) | 
|  | setrand_ublas_coord(coords,values); | 
|  | timer.stop(); | 
|  | std::cout << "ublas coord\t" << timer.value() << "\n"; | 
|  | }*/ | 
|  | #endif | 
|  |  | 
|  | // MTL4 | 
|  | #ifndef NOMTL | 
|  | { | 
|  | BENCH(setrand_mtl(coords, values)); | 
|  | std::cout << "MTL\t" << timer.value() << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals) { | 
|  | using namespace Eigen; | 
|  | SparseMatrix<Scalar> mat(SIZE, SIZE); | 
|  | // mat.startFill(2000000/*coords.size()*/); | 
|  | for (int i = 0; i < coords.size(); ++i) { | 
|  | mat.insert(coords[i].x(), coords[i].y()) = vals[i]; | 
|  | } | 
|  | mat.finalize(); | 
|  | CHECK_MEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals) { | 
|  | using namespace Eigen; | 
|  | DynamicSparseMatrix<Scalar> mat(SIZE, SIZE); | 
|  | mat.reserve(coords.size() / 10); | 
|  | for (int i = 0; i < coords.size(); ++i) { | 
|  | mat.coeffRef(coords[i].x(), coords[i].y()) += vals[i]; | 
|  | } | 
|  | mat.finalize(); | 
|  | CHECK_MEM; | 
|  | return &mat.coeffRef(coords[0].x(), coords[0].y()); | 
|  | } | 
|  |  | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals) { | 
|  | using namespace Eigen; | 
|  | int n = coords.size() / KK; | 
|  | DynamicSparseMatrix<Scalar> mat(SIZE, SIZE); | 
|  | for (int j = 0; j < KK; ++j) { | 
|  | DynamicSparseMatrix<Scalar> aux(SIZE, SIZE); | 
|  | mat.reserve(n); | 
|  | for (int i = j * n; i < (j + 1) * n; ++i) { | 
|  | aux.insert(coords[i].x(), coords[i].y()) += vals[i]; | 
|  | } | 
|  | aux.finalize(); | 
|  | mat += aux; | 
|  | } | 
|  | return &mat.coeffRef(coords[0].x(), coords[0].y()); | 
|  | } | 
|  |  | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals) { | 
|  | using namespace Eigen; | 
|  | DynamicSparseMatrix<Scalar> setter(SIZE, SIZE); | 
|  | setter.reserve(coords.size() / 10); | 
|  | for (int i = 0; i < coords.size(); ++i) { | 
|  | setter.coeffRef(coords[i].x(), coords[i].y()) += vals[i]; | 
|  | } | 
|  | SparseMatrix<Scalar> mat = setter; | 
|  | CHECK_MEM; | 
|  | return &mat.coeffRef(coords[0].x(), coords[0].y()); | 
|  | } | 
|  |  | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals) { | 
|  | using namespace Eigen; | 
|  | SparseMatrix<Scalar> mat(SIZE, SIZE); | 
|  | { | 
|  | RandomSetter<SparseMatrix<Scalar>, StdMapTraits> setter(mat); | 
|  | for (int i = 0; i < coords.size(); ++i) { | 
|  | setter(coords[i].x(), coords[i].y()) += vals[i]; | 
|  | } | 
|  | CHECK_MEM; | 
|  | } | 
|  | return &mat.coeffRef(coords[0].x(), coords[0].y()); | 
|  | } | 
|  |  | 
|  | #ifndef NOGOOGLE | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals) { | 
|  | using namespace Eigen; | 
|  | SparseMatrix<Scalar> mat(SIZE, SIZE); | 
|  | { | 
|  | RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat); | 
|  | for (int i = 0; i < coords.size(); ++i) setter(coords[i].x(), coords[i].y()) += vals[i]; | 
|  | CHECK_MEM; | 
|  | } | 
|  | return &mat.coeffRef(coords[0].x(), coords[0].y()); | 
|  | } | 
|  |  | 
|  | EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals) { | 
|  | using namespace Eigen; | 
|  | SparseMatrix<Scalar> mat(SIZE, SIZE); | 
|  | { | 
|  | RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat); | 
|  | for (int i = 0; i < coords.size(); ++i) setter(coords[i].x(), coords[i].y()) += vals[i]; | 
|  | CHECK_MEM; | 
|  | } | 
|  | return &mat.coeffRef(coords[0].x(), coords[0].y()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | template <class T> | 
|  | void coo_tocsr(const int n_row, const int n_col, const int nnz, const Coordinates Aij, const Values Ax, int Bp[], | 
|  | int Bj[], T Bx[]) { | 
|  | // compute number of non-zero entries per row of A coo_tocsr | 
|  | std::fill(Bp, Bp + n_row, 0); | 
|  |  | 
|  | for (int n = 0; n < nnz; n++) { | 
|  | Bp[Aij[n].x()]++; | 
|  | } | 
|  |  | 
|  | // cumsum the nnz per row to get Bp[] | 
|  | for (int i = 0, cumsum = 0; i < n_row; i++) { | 
|  | int temp = Bp[i]; | 
|  | Bp[i] = cumsum; | 
|  | cumsum += temp; | 
|  | } | 
|  | Bp[n_row] = nnz; | 
|  |  | 
|  | // write Aj,Ax into Bj,Bx | 
|  | for (int n = 0; n < nnz; n++) { | 
|  | int row = Aij[n].x(); | 
|  | int dest = Bp[row]; | 
|  |  | 
|  | Bj[dest] = Aij[n].y(); | 
|  | Bx[dest] = Ax[n]; | 
|  |  | 
|  | Bp[row]++; | 
|  | } | 
|  |  | 
|  | for (int i = 0, last = 0; i <= n_row; i++) { | 
|  | int temp = Bp[i]; | 
|  | Bp[i] = last; | 
|  | last = temp; | 
|  | } | 
|  |  | 
|  | // now Bp,Bj,Bx form a CSR representation (with possible duplicates) | 
|  | } | 
|  |  | 
|  | template <class T1, class T2> | 
|  | bool kv_pair_less(const std::pair<T1, T2>& x, const std::pair<T1, T2>& y) { | 
|  | return x.first < y.first; | 
|  | } | 
|  |  | 
|  | template <class I, class T> | 
|  | void csr_sort_indices(const I n_row, const I Ap[], I Aj[], T Ax[]) { | 
|  | std::vector<std::pair<I, T> > temp; | 
|  |  | 
|  | for (I i = 0; i < n_row; i++) { | 
|  | I row_start = Ap[i]; | 
|  | I row_end = Ap[i + 1]; | 
|  |  | 
|  | temp.clear(); | 
|  |  | 
|  | for (I jj = row_start; jj < row_end; jj++) { | 
|  | temp.push_back(std::make_pair(Aj[jj], Ax[jj])); | 
|  | } | 
|  |  | 
|  | std::sort(temp.begin(), temp.end(), kv_pair_less<I, T>); | 
|  |  | 
|  | for (I jj = row_start, n = 0; jj < row_end; jj++, n++) { | 
|  | Aj[jj] = temp[n].first; | 
|  | Ax[jj] = temp[n].second; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class I, class T> | 
|  | void csr_sum_duplicates(const I n_row, const I n_col, I Ap[], I Aj[], T Ax[]) { | 
|  | I nnz = 0; | 
|  | I row_end = 0; | 
|  | for (I i = 0; i < n_row; i++) { | 
|  | I jj = row_end; | 
|  | row_end = Ap[i + 1]; | 
|  | while (jj < row_end) { | 
|  | I j = Aj[jj]; | 
|  | T x = Ax[jj]; | 
|  | jj++; | 
|  | while (jj < row_end && Aj[jj] == j) { | 
|  | x += Ax[jj]; | 
|  | jj++; | 
|  | } | 
|  | Aj[nnz] = j; | 
|  | Ax[nnz] = x; | 
|  | nnz++; | 
|  | } | 
|  | Ap[i + 1] = nnz; | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals) { | 
|  | using namespace Eigen; | 
|  | SparseMatrix<Scalar> mat(SIZE, SIZE); | 
|  | mat.resizeNonZeros(coords.size()); | 
|  | //   std::cerr << "setrand_scipy...\n"; | 
|  | coo_tocsr<Scalar>(SIZE, SIZE, coords.size(), coords, vals, mat._outerIndexPtr(), mat._innerIndexPtr(), | 
|  | mat._valuePtr()); | 
|  | //   std::cerr << "coo_tocsr ok\n"; | 
|  |  | 
|  | csr_sort_indices(SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); | 
|  |  | 
|  | csr_sum_duplicates(SIZE, SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); | 
|  |  | 
|  | mat.resizeNonZeros(mat._outerIndexPtr()[SIZE]); | 
|  |  | 
|  | return &mat.coeffRef(coords[0].x(), coords[0].y()); | 
|  | } | 
|  |  | 
|  | #ifndef NOUBLAS | 
|  | EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals) { | 
|  | using namespace boost; | 
|  | using namespace boost::numeric; | 
|  | using namespace boost::numeric::ublas; | 
|  | mapped_matrix<Scalar> aux(SIZE, SIZE); | 
|  | for (int i = 0; i < coords.size(); ++i) { | 
|  | aux(coords[i].x(), coords[i].y()) += vals[i]; | 
|  | } | 
|  | CHECK_MEM; | 
|  | compressed_matrix<Scalar> mat(aux); | 
|  | return 0;  // &mat(coords[0].x(), coords[0].y()); | 
|  | } | 
|  | /*EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals) | 
|  | { | 
|  | using namespace boost; | 
|  | using namespace boost::numeric; | 
|  | using namespace boost::numeric::ublas; | 
|  | coordinate_matrix<Scalar> aux(SIZE,SIZE); | 
|  | for (int i=0; i<coords.size(); ++i) | 
|  | { | 
|  | aux(coords[i].x(), coords[i].y()) = vals[i]; | 
|  | } | 
|  | compressed_matrix<Scalar> mat(aux); | 
|  | return 0;//&mat(coords[0].x(), coords[0].y()); | 
|  | } | 
|  | EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals) | 
|  | { | 
|  | using namespace boost; | 
|  | using namespace boost::numeric; | 
|  | using namespace boost::numeric::ublas; | 
|  | compressed_matrix<Scalar> mat(SIZE,SIZE); | 
|  | for (int i=0; i<coords.size(); ++i) | 
|  | { | 
|  | mat(coords[i].x(), coords[i].y()) = vals[i]; | 
|  | } | 
|  | return 0;//&mat(coords[0].x(), coords[0].y()); | 
|  | }*/ | 
|  | EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals) { | 
|  | using namespace boost; | 
|  | using namespace boost::numeric; | 
|  | using namespace boost::numeric::ublas; | 
|  |  | 
|  | //   ublas::vector<coordinate_vector<Scalar> > foo; | 
|  | generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE, SIZE); | 
|  | for (int i = 0; i < coords.size(); ++i) { | 
|  | aux(coords[i].x(), coords[i].y()) += vals[i]; | 
|  | } | 
|  | CHECK_MEM; | 
|  | compressed_matrix<Scalar, row_major> mat(aux); | 
|  | return 0;  //&mat(coords[0].x(), coords[0].y()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef NOMTL | 
|  | EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords, const Values& vals); | 
|  | #endif |