|  | #ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ | 
|  | #define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ | 
|  |  | 
|  | typedef int TensorIndex; | 
|  | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | 
|  |  | 
|  | #include "unsupported/Eigen/CXX11/Tensor" | 
|  | #include "benchmark.h" | 
|  |  | 
|  | #define BENCHMARK_RANGE(bench, lo, hi) BENCHMARK(bench)->Range(lo, hi) | 
|  |  | 
|  | using Eigen::Tensor; | 
|  | using Eigen::TensorMap; | 
|  |  | 
|  | // TODO(bsteiner): also templatize on the input type since we have users | 
|  | // for int8 as well as floats. | 
|  | template <typename Device, typename T> | 
|  | class BenchmarkSuite { | 
|  | public: | 
|  | BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n) : m_(m), k_(k), n_(n), device_(device) { | 
|  | initialize(); | 
|  | } | 
|  |  | 
|  | BenchmarkSuite(const Device& device, size_t m) : m_(m), k_(m), n_(m), device_(device) { initialize(); } | 
|  |  | 
|  | BenchmarkSuite(const Device& device, size_t m, size_t k) : m_(1), k_(k), n_(m), device_(device) { initialize(); } | 
|  |  | 
|  | ~BenchmarkSuite() { | 
|  | device_.deallocate(a_); | 
|  | device_.deallocate(b_); | 
|  | device_.deallocate(c_); | 
|  | } | 
|  |  | 
|  | void memcpy(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | device_.memcpy(c_, a_, m_ * m_ * sizeof(T)); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | device_.memcpy(c_, a_, m_ * m_ * sizeof(T)); | 
|  | } | 
|  | // Record the number of values copied per second | 
|  | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | void typeCasting(int num_iters) { | 
|  | eigen_assert(m_ == n_); | 
|  | Eigen::array<TensorIndex, 2> sizes; | 
|  | if (sizeof(T) >= sizeof(int)) { | 
|  | sizes[0] = m_; | 
|  | sizes[1] = k_; | 
|  | } else { | 
|  | sizes[0] = m_ * sizeof(T) / sizeof(int); | 
|  | sizes[1] = k_ * sizeof(T) / sizeof(int); | 
|  | } | 
|  | const TensorMap<Tensor<int, 2, 0, TensorIndex>, Eigen::Aligned> A((int*)a_, sizes); | 
|  | TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, sizes); | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | B.device(device_) = A.template cast<T>(); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | B.device(device_) = A.template cast<T>(); | 
|  | } | 
|  | // Record the number of values copied per second | 
|  | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); | 
|  | } | 
|  |  | 
|  | void random(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | Eigen::array<TensorIndex, 2> sizes; | 
|  | sizes[0] = m_; | 
|  | sizes[1] = m_; | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = C.random(); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = C.random(); | 
|  | } | 
|  | // Record the number of random numbers generated per second | 
|  | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | void slicing(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | Eigen::array<TensorIndex, 2> sizes; | 
|  | sizes[0] = m_; | 
|  | sizes[1] = m_; | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); | 
|  |  | 
|  | const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_ / 2, m_ / 2); | 
|  | const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0); | 
|  | const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_ / 2); | 
|  | const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_ / 2, 0); | 
|  | const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_ / 2, m_ / 2); | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.slice(first_quadrant, quarter_sizes).device(device_) = A.slice(first_quadrant, quarter_sizes); | 
|  | C.slice(second_quadrant, quarter_sizes).device(device_) = B.slice(second_quadrant, quarter_sizes); | 
|  | C.slice(third_quadrant, quarter_sizes).device(device_) = A.slice(third_quadrant, quarter_sizes); | 
|  | C.slice(fourth_quadrant, quarter_sizes).device(device_) = B.slice(fourth_quadrant, quarter_sizes); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.slice(first_quadrant, quarter_sizes).device(device_) = A.slice(first_quadrant, quarter_sizes); | 
|  | C.slice(second_quadrant, quarter_sizes).device(device_) = B.slice(second_quadrant, quarter_sizes); | 
|  | C.slice(third_quadrant, quarter_sizes).device(device_) = A.slice(third_quadrant, quarter_sizes); | 
|  | C.slice(fourth_quadrant, quarter_sizes).device(device_) = B.slice(fourth_quadrant, quarter_sizes); | 
|  | } | 
|  | // Record the number of values copied from the rhs slice to the lhs slice | 
|  | // each second | 
|  | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | void rowChip(int num_iters) { | 
|  | Eigen::array<TensorIndex, 2> input_size; | 
|  | input_size[0] = k_; | 
|  | input_size[1] = n_; | 
|  | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); | 
|  | Eigen::array<TensorIndex, 1> output_size; | 
|  | output_size[0] = n_; | 
|  | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = B.chip(iter % k_, 0); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = B.chip(iter % k_, 0); | 
|  | } | 
|  | // Record the number of values copied from the rhs chip to the lhs. | 
|  | finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); | 
|  | } | 
|  |  | 
|  | void colChip(int num_iters) { | 
|  | Eigen::array<TensorIndex, 2> input_size; | 
|  | input_size[0] = k_; | 
|  | input_size[1] = n_; | 
|  | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); | 
|  | Eigen::array<TensorIndex, 1> output_size; | 
|  | output_size[0] = n_; | 
|  | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = B.chip(iter % n_, 1); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = B.chip(iter % n_, 1); | 
|  | } | 
|  | // Record the number of values copied from the rhs chip to the lhs. | 
|  | finalizeBenchmark(static_cast<int64_t>(n_) * num_iters); | 
|  | } | 
|  |  | 
|  | void shuffling(int num_iters) { | 
|  | eigen_assert(m_ == n_); | 
|  | Eigen::array<TensorIndex, 2> size_a; | 
|  | size_a[0] = m_; | 
|  | size_a[1] = k_; | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); | 
|  | Eigen::array<TensorIndex, 2> size_b; | 
|  | size_b[0] = k_; | 
|  | size_b[1] = m_; | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); | 
|  |  | 
|  | Eigen::array<int, 2> shuffle; | 
|  | shuffle[0] = 1; | 
|  | shuffle[1] = 0; | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | B.device(device_) = A.shuffle(shuffle); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | B.device(device_) = A.shuffle(shuffle); | 
|  | } | 
|  | // Record the number of values shuffled from A and copied to B each second | 
|  | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); | 
|  | } | 
|  |  | 
|  | void padding(int num_iters) { | 
|  | eigen_assert(m_ == k_); | 
|  | Eigen::array<TensorIndex, 2> size_a; | 
|  | size_a[0] = m_; | 
|  | size_a[1] = k_ - 3; | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); | 
|  | Eigen::array<TensorIndex, 2> size_b; | 
|  | size_b[0] = k_; | 
|  | size_b[1] = m_; | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); | 
|  |  | 
|  | Eigen::IndexPairList<Eigen::type2indexpair<0, 0>, Eigen::type2indexpair<2, 1>> paddings; | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | B.device(device_) = A.pad(paddings); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | B.device(device_) = A.pad(paddings); | 
|  | } | 
|  | // Record the number of values copied from the padded tensor A each second | 
|  | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); | 
|  | } | 
|  |  | 
|  | void striding(int num_iters) { | 
|  | eigen_assert(m_ == k_); | 
|  | Eigen::array<TensorIndex, 2> size_a; | 
|  | size_a[0] = m_; | 
|  | size_a[1] = k_; | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); | 
|  | Eigen::array<TensorIndex, 2> size_b; | 
|  | size_b[0] = m_; | 
|  | size_b[1] = k_ / 2; | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b); | 
|  |  | 
|  | Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2>> strides; | 
|  |  | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | B.device(device_) = A.stride(strides); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | B.device(device_) = A.stride(strides); | 
|  | } | 
|  | // Record the number of values copied from the padded tensor A each second | 
|  | finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters); | 
|  | } | 
|  |  | 
|  | void broadcasting(int num_iters) { | 
|  | Eigen::array<TensorIndex, 2> size_a; | 
|  | size_a[0] = m_; | 
|  | size_a[1] = 1; | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a); | 
|  | Eigen::array<TensorIndex, 2> size_c; | 
|  | size_c[0] = m_; | 
|  | size_c[1] = n_; | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c); | 
|  | Eigen::IndexList<Eigen::type2index<1>, int> broadcast; | 
|  | broadcast.set(1, n_); | 
|  |  | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = A.broadcast(broadcast); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A.broadcast(broadcast); | 
|  | } | 
|  | // Record the number of values broadcasted from A and copied to C each second | 
|  | finalizeBenchmark(static_cast<int64_t>(m_) * n_ * num_iters); | 
|  | } | 
|  |  | 
|  | void coeffWiseOp(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | Eigen::array<TensorIndex, 2> sizes; | 
|  | sizes[0] = m_; | 
|  | sizes[1] = m_; | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7)); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7)); | 
|  | } | 
|  | // Record the number of FLOP executed per second (2 multiplications and | 
|  | // 1 addition per value) | 
|  | finalizeBenchmark(static_cast<int64_t>(3) * m_ * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | void algebraicFunc(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | Eigen::array<TensorIndex, 2> sizes; | 
|  | sizes[0] = m_; | 
|  | sizes[1] = m_; | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); | 
|  |  | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); | 
|  | } | 
|  | // Record the number of FLOP executed per second (assuming one operation | 
|  | // per value) | 
|  | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | void transcendentalFunc(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | Eigen::array<TensorIndex, 2> sizes; | 
|  | sizes[0] = m_; | 
|  | sizes[1] = m_; | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes); | 
|  | const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes); | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes); | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = A.exp() + B.log(); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A.exp() + B.log(); | 
|  | } | 
|  | // Record the number of FLOP executed per second (assuming one operation | 
|  | // per value) | 
|  | finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | // Row reduction | 
|  | void rowReduction(int num_iters) { | 
|  | Eigen::array<TensorIndex, 2> input_size; | 
|  | input_size[0] = k_; | 
|  | input_size[1] = n_; | 
|  | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); | 
|  | Eigen::array<TensorIndex, 1> output_size; | 
|  | output_size[0] = n_; | 
|  | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); | 
|  | Eigen::IndexList<Eigen::type2index<0>> sum_along_dim; | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = B.sum(sum_along_dim); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = B.sum(sum_along_dim); | 
|  | } | 
|  | // Record the number of FLOP executed per second (assuming one operation | 
|  | // per value) | 
|  | finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); | 
|  | } | 
|  |  | 
|  | // Column reduction | 
|  | void colReduction(int num_iters) { | 
|  | Eigen::array<TensorIndex, 2> input_size; | 
|  | input_size[0] = k_; | 
|  | input_size[1] = n_; | 
|  | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); | 
|  | Eigen::array<TensorIndex, 1> output_size; | 
|  | output_size[0] = k_; | 
|  | TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> A(a_, output_size); | 
|  |  | 
|  | #ifndef EIGEN_HAS_INDEX_LIST | 
|  | Eigen::array<TensorIndex, 1> sum_along_dim; | 
|  | sum_along_dim[0] = 1; | 
|  | #else | 
|  | // Take advantage of cxx11 to give the compiler information it can use to | 
|  | // optimize the code. | 
|  | Eigen::IndexList<Eigen::type2index<1>> sum_along_dim; | 
|  | #endif | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | A.device(device_) = B.sum(sum_along_dim); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | A.device(device_) = B.sum(sum_along_dim); | 
|  | } | 
|  | // Record the number of FLOP executed per second (assuming one operation | 
|  | // per value) | 
|  | finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); | 
|  | } | 
|  |  | 
|  | // Full reduction | 
|  | void fullReduction(int num_iters) { | 
|  | Eigen::array<TensorIndex, 2> input_size; | 
|  | input_size[0] = k_; | 
|  | input_size[1] = n_; | 
|  | const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, input_size); | 
|  | Eigen::array<TensorIndex, 0> output_size; | 
|  | TensorMap<Tensor<T, 0, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size); | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = B.sum(); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = B.sum(); | 
|  | } | 
|  | // Record the number of FLOP executed per second (assuming one operation | 
|  | // per value) | 
|  | finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters); | 
|  | } | 
|  |  | 
|  | // do a contraction which is equivalent to a matrix multiplication | 
|  | void contraction(int num_iters) { contraction<static_cast<int>(Eigen::ColMajor)>(num_iters, false, false); } | 
|  |  | 
|  | void contractionRowMajor(int num_iters) { contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, false, false); } | 
|  |  | 
|  | void contractionRowMajorAT(int num_iters) { contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, true, false); } | 
|  |  | 
|  | void contractionRowMajorBT(int num_iters) { contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, false, true); } | 
|  |  | 
|  | void contractionRowMajorABT(int num_iters) { contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, true, true); } | 
|  |  | 
|  | void convolution(int num_iters, int kernel_x, int kernel_y) { | 
|  | Eigen::array<TensorIndex, 2> input_sizes; | 
|  | input_sizes[0] = m_; | 
|  | input_sizes[1] = n_; | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, input_sizes); | 
|  | Eigen::array<TensorIndex, 2> kernel_sizes; | 
|  | kernel_sizes[0] = kernel_x; | 
|  | kernel_sizes[1] = kernel_y; | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, kernel_sizes); | 
|  | Eigen::array<TensorIndex, 2> result_sizes; | 
|  | result_sizes[0] = m_ - kernel_x + 1; | 
|  | result_sizes[1] = n_ - kernel_y + 1; | 
|  | TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, result_sizes); | 
|  | Eigen::array<TensorIndex, 2> dims; | 
|  | dims[0] = 0; | 
|  | dims[1] = 1; | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = A.convolve(B, dims); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A.convolve(B, dims); | 
|  | } | 
|  | // Record the number of FLOPs executed per second (kernel_size | 
|  | // multiplications and additions for each value in the resulting tensor) | 
|  | finalizeBenchmark(static_cast<int64_t>(2) * (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * | 
|  | num_iters); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // do a contraction which is equivalent to a matrix multiplication | 
|  | template <int Layout> | 
|  | void contraction(int num_iters, bool trans_a, bool trans_b) { | 
|  | Eigen::array<TensorIndex, 2> sizeA; | 
|  | sizeA[0] = (trans_a ? k_ : m_); | 
|  | sizeA[1] = (trans_a ? m_ : k_); | 
|  | Eigen::array<TensorIndex, 2> sizeB; | 
|  | sizeB[0] = (trans_b ? n_ : k_); | 
|  | sizeB[1] = (trans_b ? k_ : n_); | 
|  | Eigen::array<TensorIndex, 2> sizeC; | 
|  | sizeC[0] = m_; | 
|  | sizeC[1] = n_; | 
|  |  | 
|  | const TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> A(a_, sizeA); | 
|  | const TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> B(b_, sizeB); | 
|  | TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> C(c_, sizeC); | 
|  |  | 
|  | typedef typename Tensor<T, 2, Layout>::DimensionPair DimPair; | 
|  | Eigen::array<DimPair, 1> dims; | 
|  | TensorIndex a_contract_dim = (trans_a ? 0 : 1); | 
|  | TensorIndex b_contract_dim = (trans_b ? 1 : 0); | 
|  | dims[0] = DimPair(a_contract_dim, b_contract_dim); | 
|  | #ifdef EIGEN_USE_SYCL  // warmup for sycl | 
|  | for (int iter = 0; iter < 10; ++iter) { | 
|  | C.device(device_) = A.contract(B, dims); | 
|  | } | 
|  | #endif | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A.contract(B, dims); | 
|  | } | 
|  | // Record the number of FLOP executed per second (size_ multiplications and | 
|  | // additions for each value in the resulting tensor) | 
|  | finalizeBenchmark(static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters); | 
|  | } | 
|  |  | 
|  | void initialize() { | 
|  | a_ = (T*)device_.allocate(m_ * k_ * sizeof(T)); | 
|  | b_ = (T*)device_.allocate(k_ * n_ * sizeof(T)); | 
|  | c_ = (T*)device_.allocate(m_ * n_ * sizeof(T)); | 
|  |  | 
|  | // Initialize the content of the memory pools to prevent asan from | 
|  | // complaining. | 
|  | device_.fill(a_, a_ + m_ * k_, T(12)); | 
|  | device_.fill(b_, b_ + k_ * n_, T(23)); | 
|  | device_.fill(c_, c_ + m_ * n_, T(31)); | 
|  | } | 
|  |  | 
|  | inline void finalizeBenchmark(int64_t num_items) { | 
|  | #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) | 
|  | if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) { | 
|  | device_.synchronize(); | 
|  | } | 
|  | #elif defined(EIGEN_USE_SYCL) | 
|  | if (Eigen::internal::is_same<Device, Eigen::SyclDevice>::value) { | 
|  | device_.synchronize(); | 
|  | } | 
|  |  | 
|  | #endif | 
|  | StopBenchmarkTiming(); | 
|  | SetBenchmarkFlopsProcessed(num_items); | 
|  | } | 
|  |  | 
|  | TensorIndex m_; | 
|  | TensorIndex k_; | 
|  | TensorIndex n_; | 
|  | T* a_; | 
|  | T* b_; | 
|  | T* c_; | 
|  | Device device_; | 
|  | }; | 
|  | #endif  // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |