| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_AUTODIFF_SCALAR_H | 
 | #define EIGEN_AUTODIFF_SCALAR_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename DerivativeType, bool Enable> | 
 | struct auto_diff_special_op; | 
 |  | 
 | template <typename DerivativeType, typename OtherDerivativeType, typename EnableIf = void> | 
 | struct maybe_coherent_pad_helper { | 
 |   static constexpr int SizeAtCompileTime = | 
 |       max_size_prefer_dynamic(DerivativeType::SizeAtCompileTime, OtherDerivativeType::SizeAtCompileTime); | 
 |   using type = CoherentPadOp<DerivativeType, SizeAtCompileTime>; | 
 |   static type pad(const DerivativeType& x, const OtherDerivativeType& y) { | 
 |     // CoherentPadOp uses variable_if_dynamic<SizeAtCompileTime>.  In this case, `SizeAtCompileTime` might | 
 |     // by Dynamic, so we need to take the runtime maximum of x, y. | 
 |     return CoherentPadOp<DerivativeType, SizeAtCompileTime>(x, numext::maxi(x.size(), y.size())); | 
 |   } | 
 | }; | 
 |  | 
 | // Both are fixed-sized and equal, don't need to pad. | 
 | // Both are fixed-size and this is larger than other, don't need to pad. | 
 | template <typename DerivativeType, typename OtherDerivativeType> | 
 | struct maybe_coherent_pad_helper< | 
 |     DerivativeType, OtherDerivativeType, | 
 |     std::enable_if_t<enum_ge_not_dynamic(DerivativeType::SizeAtCompileTime, OtherDerivativeType::SizeAtCompileTime)>> { | 
 |   using type = const DerivativeType&; | 
 |   static const DerivativeType& pad(const DerivativeType& x, const OtherDerivativeType& /*y*/) { return x; } | 
 | }; | 
 |  | 
 | template <typename DerivativeType, typename OtherDerivativeType> | 
 | typename maybe_coherent_pad_helper<DerivativeType, OtherDerivativeType>::type MaybeCoherentPad( | 
 |     const DerivativeType& x, const OtherDerivativeType& y) { | 
 |   return maybe_coherent_pad_helper<DerivativeType, OtherDerivativeType>::pad(x, y); | 
 | } | 
 |  | 
 | template <typename Op, typename LhsDerivativeType, typename RhsDerivativeType> | 
 | auto MakeCoherentCwiseBinaryOp(const LhsDerivativeType& x, const RhsDerivativeType& y, Op op = Op()) { | 
 |   const auto& lhs = MaybeCoherentPad(x, y); | 
 |   const auto& rhs = MaybeCoherentPad(y, x); | 
 |   return CwiseBinaryOp<Op, remove_all_t<decltype(lhs)>, remove_all_t<decltype(rhs)>>(lhs, rhs, op); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | template <typename DerivativeType> | 
 | class AutoDiffScalar; | 
 |  | 
 | template <typename NewDerType> | 
 | inline AutoDiffScalar<NewDerType> MakeAutoDiffScalar(const typename NewDerType::Scalar& value, const NewDerType& der) { | 
 |   return AutoDiffScalar<NewDerType>(value, der); | 
 | } | 
 |  | 
 | /** \class AutoDiffScalar | 
 |  * \brief A scalar type replacement with automatic differentiation capability | 
 |  * | 
 |  * \param DerivativeType the vector type used to store/represent the derivatives. The base scalar type | 
 |  *                 as well as the number of derivatives to compute are determined from this type. | 
 |  *                 Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf | 
 |  *                 if the number of derivatives is not known at compile time, and/or, the number | 
 |  *                 of derivatives is large. | 
 |  *                 Note that DerivativeType can also be a reference (e.g., \c VectorXf&) to wrap a | 
 |  *                 existing vector into an AutoDiffScalar. | 
 |  *                 Finally, DerivativeType can also be any Eigen compatible expression. | 
 |  * | 
 |  * This class represents a scalar value while tracking its respective derivatives using Eigen's expression | 
 |  * template mechanism. | 
 |  * | 
 |  * It supports the following list of global math function: | 
 |  *  - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos, | 
 |  *  - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos, | 
 |  *  - internal::conj, internal::real, internal::imag, numext::abs2. | 
 |  * | 
 |  * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However, | 
 |  * in that case, the expression template mechanism only occurs at the top Matrix level, | 
 |  * while derivatives are computed right away. | 
 |  * | 
 |  */ | 
 |  | 
 | template <typename DerivativeType> | 
 | class AutoDiffScalar | 
 |     : public internal::auto_diff_special_op< | 
 |           DerivativeType, !internal::is_same<typename internal::traits<internal::remove_all_t<DerivativeType>>::Scalar, | 
 |                                              typename NumTraits<typename internal::traits< | 
 |                                                  internal::remove_all_t<DerivativeType>>::Scalar>::Real>::value> { | 
 |  public: | 
 |   typedef internal::auto_diff_special_op< | 
 |       DerivativeType, | 
 |       !internal::is_same< | 
 |           typename internal::traits<internal::remove_all_t<DerivativeType>>::Scalar, | 
 |           typename NumTraits<typename internal::traits<internal::remove_all_t<DerivativeType>>::Scalar>::Real>::value> | 
 |       Base; | 
 |   typedef internal::remove_all_t<DerivativeType> DerType; | 
 |   typedef typename internal::traits<DerType>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real Real; | 
 |  | 
 |   using Base::operator+; | 
 |   using Base::operator*; | 
 |  | 
 |   /** Default constructor without any initialization. */ | 
 |   AutoDiffScalar() {} | 
 |  | 
 |   /** Constructs an active scalar from its \a value, | 
 |       and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */ | 
 |   AutoDiffScalar(const Scalar& value, int nbDer, int derNumber) : m_value(value), m_derivatives(DerType::Zero(nbDer)) { | 
 |     m_derivatives.coeffRef(derNumber) = Scalar(1); | 
 |   } | 
 |  | 
 |   /** Conversion from a scalar constant to an active scalar. | 
 |    * The derivatives are set to zero. */ | 
 |   /*explicit*/ AutoDiffScalar(const Real& value) : m_value(value) { | 
 |     if (m_derivatives.size() > 0) m_derivatives.setZero(); | 
 |   } | 
 |  | 
 |   /** Constructs an active scalar from its \a value and derivatives \a der */ | 
 |   AutoDiffScalar(const Scalar& value, const DerType& der) : m_value(value), m_derivatives(der) {} | 
 |  | 
 |   template <typename OtherDerType> | 
 |   AutoDiffScalar( | 
 |       const AutoDiffScalar<OtherDerType>& other | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |       , | 
 |       std::enable_if_t< | 
 |           internal::is_same<Scalar, typename internal::traits<internal::remove_all_t<OtherDerType>>::Scalar>::value && | 
 |               internal::is_convertible<OtherDerType, DerType>::value, | 
 |           void*> = 0 | 
 | #endif | 
 |       ) | 
 |       : m_value(other.value()), m_derivatives(other.derivatives()) { | 
 |   } | 
 |  | 
 |   friend std::ostream& operator<<(std::ostream& s, const AutoDiffScalar& a) { return s << a.value(); } | 
 |  | 
 |   AutoDiffScalar(const AutoDiffScalar& other) : m_value(other.value()), m_derivatives(other.derivatives()) {} | 
 |  | 
 |   template <typename OtherDerType> | 
 |   inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other) { | 
 |     m_value = other.value(); | 
 |     m_derivatives = other.derivatives(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar& operator=(const AutoDiffScalar& other) { | 
 |     m_value = other.value(); | 
 |     m_derivatives = other.derivatives(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar& operator=(const Scalar& other) { | 
 |     m_value = other; | 
 |     if (m_derivatives.size() > 0) m_derivatives.setZero(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   //     inline operator const Scalar& () const { return m_value; } | 
 |   //     inline operator Scalar& () { return m_value; } | 
 |  | 
 |   inline const Scalar& value() const { return m_value; } | 
 |   inline Scalar& value() { return m_value; } | 
 |  | 
 |   inline const DerType& derivatives() const { return m_derivatives; } | 
 |   inline DerType& derivatives() { return m_derivatives; } | 
 |  | 
 |   inline bool operator<(const Scalar& other) const { return m_value < other; } | 
 |   inline bool operator<=(const Scalar& other) const { return m_value <= other; } | 
 |   inline bool operator>(const Scalar& other) const { return m_value > other; } | 
 |   inline bool operator>=(const Scalar& other) const { return m_value >= other; } | 
 |   inline bool operator==(const Scalar& other) const { return m_value == other; } | 
 |   inline bool operator!=(const Scalar& other) const { return m_value != other; } | 
 |  | 
 |   friend inline bool operator<(const Scalar& a, const AutoDiffScalar& b) { return a < b.value(); } | 
 |   friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); } | 
 |   friend inline bool operator>(const Scalar& a, const AutoDiffScalar& b) { return a > b.value(); } | 
 |   friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); } | 
 |   friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); } | 
 |   friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); } | 
 |  | 
 |   template <typename OtherDerType> | 
 |   inline bool operator<(const AutoDiffScalar<OtherDerType>& b) const { | 
 |     return m_value < b.value(); | 
 |   } | 
 |   template <typename OtherDerType> | 
 |   inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const { | 
 |     return m_value <= b.value(); | 
 |   } | 
 |   template <typename OtherDerType> | 
 |   inline bool operator>(const AutoDiffScalar<OtherDerType>& b) const { | 
 |     return m_value > b.value(); | 
 |   } | 
 |   template <typename OtherDerType> | 
 |   inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const { | 
 |     return m_value >= b.value(); | 
 |   } | 
 |   template <typename OtherDerType> | 
 |   inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const { | 
 |     return m_value == b.value(); | 
 |   } | 
 |   template <typename OtherDerType> | 
 |   inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const { | 
 |     return m_value != b.value(); | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar<DerType&> operator+(const Scalar& other) const { | 
 |     return AutoDiffScalar<DerType&>(m_value + other, m_derivatives); | 
 |   } | 
 |  | 
 |   friend inline AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b) { | 
 |     return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
 |   } | 
 |  | 
 |   //     inline const AutoDiffScalar<DerType&> operator+(const Real& other) const | 
 |   //     { | 
 |   //       return AutoDiffScalar<DerType&>(m_value + other, m_derivatives); | 
 |   //     } | 
 |  | 
 |   //     friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b) | 
 |   //     { | 
 |   //       return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
 |   //     } | 
 |  | 
 |   inline AutoDiffScalar& operator+=(const Scalar& other) { | 
 |     value() += other; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   template <typename OtherDerType> | 
 |   inline auto operator+(const AutoDiffScalar<OtherDerType>& other) const { | 
 |     return MakeAutoDiffScalar( | 
 |         m_value + other.value(), | 
 |         internal::MakeCoherentCwiseBinaryOp<internal::scalar_sum_op<Scalar>>(m_derivatives, other.derivatives())); | 
 |   } | 
 |  | 
 |   template <typename OtherDerType> | 
 |   inline AutoDiffScalar& operator+=(const AutoDiffScalar<OtherDerType>& other) { | 
 |     (*this) = (*this) + other; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar<DerType&> operator-(const Scalar& b) const { | 
 |     return AutoDiffScalar<DerType&>(m_value - b, m_derivatives); | 
 |   } | 
 |  | 
 |   friend inline AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>> operator-( | 
 |       const Scalar& a, const AutoDiffScalar& b) { | 
 |     return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>>(a - b.value(), | 
 |                                                                                              -b.derivatives()); | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar& operator-=(const Scalar& other) { | 
 |     value() -= other; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   template <typename OtherDerType> | 
 |   inline auto operator-(const AutoDiffScalar<OtherDerType>& other) const { | 
 |     return MakeAutoDiffScalar(m_value - other.value(), | 
 |                               internal::MakeCoherentCwiseBinaryOp<internal::scalar_difference_op<Scalar>>( | 
 |                                   m_derivatives, other.derivatives())); | 
 |   } | 
 |  | 
 |   template <typename OtherDerType> | 
 |   inline AutoDiffScalar& operator-=(const AutoDiffScalar<OtherDerType>& other) { | 
 |     *this = *this - other; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>> operator-() const { | 
 |     return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType>>(-m_value, -m_derivatives); | 
 |   } | 
 |  | 
 |   inline auto operator*(const Scalar& other) const { | 
 |     return MakeAutoDiffScalar(m_value * other, m_derivatives * other); | 
 |   } | 
 |  | 
 |   friend inline auto operator*(const Scalar& other, const AutoDiffScalar& a) { | 
 |     return MakeAutoDiffScalar(a.value() * other, a.derivatives() * other); | 
 |   } | 
 |  | 
 |   //     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
 |   //     operator*(const Real& other) const | 
 |   //     { | 
 |   //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
 |   //         m_value * other, | 
 |   //         (m_derivatives * other)); | 
 |   //     } | 
 |   // | 
 |   //     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
 |   //     operator*(const Real& other, const AutoDiffScalar& a) | 
 |   //     { | 
 |   //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
 |   //         a.value() * other, | 
 |   //         a.derivatives() * other); | 
 |   //     } | 
 |  | 
 |   inline auto operator/(const Scalar& other) const { | 
 |     return MakeAutoDiffScalar(m_value / other, (m_derivatives * (Scalar(1) / other))); | 
 |   } | 
 |  | 
 |   friend inline auto operator/(const Scalar& other, const AutoDiffScalar& a) { | 
 |     return MakeAutoDiffScalar(other / a.value(), a.derivatives() * (Scalar(-other) / (a.value() * a.value()))); | 
 |   } | 
 |  | 
 |   //     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
 |   //     operator/(const Real& other) const | 
 |   //     { | 
 |   //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
 |   //         m_value / other, | 
 |   //         (m_derivatives * (Real(1)/other))); | 
 |   //     } | 
 |   // | 
 |   //     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type > | 
 |   //     operator/(const Real& other, const AutoDiffScalar& a) | 
 |   //     { | 
 |   //       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >( | 
 |   //         other / a.value(), | 
 |   //         a.derivatives() * (-Real(1)/other)); | 
 |   //     } | 
 |  | 
 |   template <typename OtherDerType> | 
 |   inline auto operator/(const AutoDiffScalar<OtherDerType>& other) const { | 
 |     return MakeAutoDiffScalar(m_value / other.value(), | 
 |                               internal::MakeCoherentCwiseBinaryOp<internal::scalar_difference_op<Scalar>>( | 
 |                                   m_derivatives * other.value(), (other.derivatives() * m_value)) * | 
 |                                   (Scalar(1) / (other.value() * other.value()))); | 
 |   } | 
 |  | 
 |   template <typename OtherDerType> | 
 |   inline auto operator*(const AutoDiffScalar<OtherDerType>& other) const { | 
 |     return MakeAutoDiffScalar(m_value * other.value(), | 
 |                               internal::MakeCoherentCwiseBinaryOp<internal::scalar_sum_op<Scalar>>( | 
 |                                   m_derivatives * other.value(), other.derivatives() * m_value)); | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar& operator*=(const Scalar& other) { | 
 |     *this = *this * other; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   template <typename OtherDerType> | 
 |   inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other) { | 
 |     *this = *this * other; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar& operator/=(const Scalar& other) { | 
 |     *this = *this / other; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   template <typename OtherDerType> | 
 |   inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other) { | 
 |     *this = *this / other; | 
 |     return *this; | 
 |   } | 
 |  | 
 |  protected: | 
 |   Scalar m_value; | 
 |   DerType m_derivatives; | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename DerivativeType> | 
 | struct auto_diff_special_op<DerivativeType, true> | 
 | //   : auto_diff_scalar_op<DerivativeType, typename NumTraits<Scalar>::Real, | 
 | //                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value> | 
 | { | 
 |   typedef remove_all_t<DerivativeType> DerType; | 
 |   typedef typename traits<DerType>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real Real; | 
 |  | 
 |   //   typedef auto_diff_scalar_op<DerivativeType, typename NumTraits<Scalar>::Real, | 
 |   //                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base; | 
 |  | 
 |   //   using Base::operator+; | 
 |   //   using Base::operator+=; | 
 |   //   using Base::operator-; | 
 |   //   using Base::operator-=; | 
 |   //   using Base::operator*; | 
 |   //   using Base::operator*=; | 
 |  | 
 |   const AutoDiffScalar<DerivativeType>& derived() const { | 
 |     return *static_cast<const AutoDiffScalar<DerivativeType>*>(this); | 
 |   } | 
 |   AutoDiffScalar<DerivativeType>& derived() { return *static_cast<AutoDiffScalar<DerivativeType>*>(this); } | 
 |  | 
 |   inline AutoDiffScalar<DerType&> operator+(const Real& other) const { | 
 |     return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives()); | 
 |   } | 
 |  | 
 |   friend inline AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<DerivativeType>& b) { | 
 |     return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives()); | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar<DerivativeType>& operator+=(const Real& other) { | 
 |     derived().value() += other; | 
 |     return derived(); | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar, Real>>, DerType>::Type> operator*( | 
 |       const Real& other) const { | 
 |     return AutoDiffScalar<typename CwiseUnaryOp<bind2nd_op<scalar_product_op<Scalar, Real>>, DerType>::Type>( | 
 |         derived().value() * other, derived().derivatives() * other); | 
 |   } | 
 |  | 
 |   friend inline AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real, Scalar>>, DerType>::Type> | 
 |   operator*(const Real& other, const AutoDiffScalar<DerivativeType>& a) { | 
 |     return AutoDiffScalar<typename CwiseUnaryOp<bind1st_op<scalar_product_op<Real, Scalar>>, DerType>::Type>( | 
 |         a.value() * other, a.derivatives() * other); | 
 |   } | 
 |  | 
 |   inline AutoDiffScalar<DerivativeType>& operator*=(const Scalar& other) { | 
 |     *this = *this * other; | 
 |     return derived(); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename DerivativeType> | 
 | struct auto_diff_special_op<DerivativeType, false> { | 
 |   void operator*() const; | 
 |   void operator-() const; | 
 |   void operator+() const; | 
 | }; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | template <typename DerType, typename BinOp> | 
 | struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>, typename DerType::Scalar, BinOp> { | 
 |   typedef AutoDiffScalar<DerType> ReturnType; | 
 | }; | 
 |  | 
 | template <typename DerType, typename BinOp> | 
 | struct ScalarBinaryOpTraits<typename DerType::Scalar, AutoDiffScalar<DerType>, BinOp> { | 
 |   typedef AutoDiffScalar<DerType> ReturnType; | 
 | }; | 
 |  | 
 | // The following is an attempt to let Eigen's known about expression template, but that's more tricky! | 
 |  | 
 | // template<typename DerType, typename BinOp> | 
 | // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType>,AutoDiffScalar<DerType>, BinOp> | 
 | // { | 
 | //   enum { Defined = 1 }; | 
 | //   typedef AutoDiffScalar<typename DerType::PlainObject> ReturnType; | 
 | // }; | 
 | // | 
 | // template<typename DerType1,typename DerType2, typename BinOp> | 
 | // struct ScalarBinaryOpTraits<AutoDiffScalar<DerType1>,AutoDiffScalar<DerType2>, BinOp> | 
 | // { | 
 | //   enum { Defined = 1 };//internal::is_same<typename DerType1::Scalar,typename DerType2::Scalar>::value }; | 
 | //   typedef AutoDiffScalar<typename DerType1::PlainObject> ReturnType; | 
 | // }; | 
 |  | 
 | #define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC, CODE)                                              \ | 
 |   template <typename DerType>                                                                        \ | 
 |   inline auto FUNC(const Eigen::AutoDiffScalar<DerType>& x) {                                        \ | 
 |     using namespace Eigen;                                                                           \ | 
 |     typedef typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar Scalar; \ | 
 |     EIGEN_UNUSED_VARIABLE(sizeof(Scalar));                                                           \ | 
 |     CODE;                                                                                            \ | 
 |   } | 
 |  | 
 | template <typename DerType> | 
 | struct CleanedUpDerType { | 
 |   typedef AutoDiffScalar<typename Eigen::internal::remove_all_t<DerType>::PlainObject> type; | 
 | }; | 
 |  | 
 | template <typename DerType> | 
 | inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x) { | 
 |   return x; | 
 | } | 
 | template <typename DerType> | 
 | inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x) { | 
 |   return x; | 
 | } | 
 | template <typename DerType> | 
 | inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&) { | 
 |   return 0.; | 
 | } | 
 | template <typename DerType, typename T> | 
 | inline typename CleanedUpDerType<DerType>::type(min)(const AutoDiffScalar<DerType>& x, const T& y) { | 
 |   typedef typename CleanedUpDerType<DerType>::type ADS; | 
 |   return (x <= y ? ADS(x) : ADS(y)); | 
 | } | 
 | template <typename DerType, typename T> | 
 | inline typename CleanedUpDerType<DerType>::type(max)(const AutoDiffScalar<DerType>& x, const T& y) { | 
 |   typedef typename CleanedUpDerType<DerType>::type ADS; | 
 |   return (x >= y ? ADS(x) : ADS(y)); | 
 | } | 
 | template <typename DerType, typename T> | 
 | inline typename CleanedUpDerType<DerType>::type(min)(const T& x, const AutoDiffScalar<DerType>& y) { | 
 |   typedef typename CleanedUpDerType<DerType>::type ADS; | 
 |   return (x < y ? ADS(x) : ADS(y)); | 
 | } | 
 | template <typename DerType, typename T> | 
 | inline typename CleanedUpDerType<DerType>::type(max)(const T& x, const AutoDiffScalar<DerType>& y) { | 
 |   typedef typename CleanedUpDerType<DerType>::type ADS; | 
 |   return (x > y ? ADS(x) : ADS(y)); | 
 | } | 
 | template <typename DerType> | 
 | inline | 
 |     typename CleanedUpDerType<DerType>::type(min)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) { | 
 |   return (x.value() < y.value() ? x : y); | 
 | } | 
 | template <typename DerType> | 
 | inline | 
 |     typename CleanedUpDerType<DerType>::type(max)(const AutoDiffScalar<DerType>& x, const AutoDiffScalar<DerType>& y) { | 
 |   return (x.value() >= y.value() ? x : y); | 
 | } | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs, using std::abs; | 
 |                                     return Eigen::MakeAutoDiffScalar(abs(x.value()), | 
 |                                                                      x.derivatives() * (x.value() < 0 ? -1 : 1));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2, using numext::abs2; | 
 |                                     return Eigen::MakeAutoDiffScalar(abs2(x.value()), | 
 |                                                                      x.derivatives() * (Scalar(2) * x.value()));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt, using std::sqrt; Scalar sqrtx = sqrt(x.value()); | 
 |                                     return Eigen::MakeAutoDiffScalar(sqrtx, x.derivatives() * (Scalar(0.5) / sqrtx));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos, using std::cos; using std::sin; | 
 |                                     return Eigen::MakeAutoDiffScalar(cos(x.value()), | 
 |                                                                      x.derivatives() * (-sin(x.value())));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin, using std::sin; using std::cos; | 
 |                                     return Eigen::MakeAutoDiffScalar(sin(x.value()), x.derivatives() * cos(x.value()));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp, using std::exp; Scalar expx = exp(x.value()); | 
 |                                     return Eigen::MakeAutoDiffScalar(expx, x.derivatives() * expx);) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log, using std::log; | 
 |                                     return Eigen::MakeAutoDiffScalar(log(x.value()), | 
 |                                                                      x.derivatives() * (Scalar(1) / x.value()));) | 
 |  | 
 | template <typename DerType> | 
 | inline auto pow(const Eigen::AutoDiffScalar<DerType>& x, | 
 |                 const typename internal::traits<internal::remove_all_t<DerType>>::Scalar& y) { | 
 |   using namespace Eigen; | 
 |   using std::pow; | 
 |   return Eigen::MakeAutoDiffScalar(pow(x.value(), y), x.derivatives() * (y * pow(x.value(), y - 1))); | 
 | } | 
 |  | 
 | template <typename DerTypeA, typename DerTypeB> | 
 | inline AutoDiffScalar<Matrix<typename internal::traits<internal::remove_all_t<DerTypeA>>::Scalar, Dynamic, 1>> atan2( | 
 |     const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b) { | 
 |   using std::atan2; | 
 |   typedef typename internal::traits<internal::remove_all_t<DerTypeA>>::Scalar Scalar; | 
 |   typedef AutoDiffScalar<Matrix<Scalar, Dynamic, 1>> PlainADS; | 
 |   PlainADS ret; | 
 |   ret.value() = atan2(a.value(), b.value()); | 
 |  | 
 |   Scalar squared_hypot = a.value() * a.value() + b.value() * b.value(); | 
 |  | 
 |   // if (squared_hypot==0) the derivation is undefined and the following results in a NaN: | 
 |   ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot; | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan, using std::tan; using std::cos; return Eigen::MakeAutoDiffScalar( | 
 |                                         tan(x.value()), x.derivatives() * (Scalar(1) / numext::abs2(cos(x.value()))));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin, using std::sqrt; using std::asin; return Eigen::MakeAutoDiffScalar( | 
 |                                         asin(x.value()), | 
 |                                         x.derivatives() * (Scalar(1) / sqrt(1 - numext::abs2(x.value()))));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos, using std::sqrt; using std::acos; return Eigen::MakeAutoDiffScalar( | 
 |                                         acos(x.value()), | 
 |                                         x.derivatives() * (Scalar(-1) / sqrt(1 - numext::abs2(x.value()))));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY( | 
 |     tanh, using std::cosh; using std::tanh; | 
 |     return Eigen::MakeAutoDiffScalar(tanh(x.value()), x.derivatives() * (Scalar(1) / numext::abs2(cosh(x.value()))));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sinh, using std::sinh; using std::cosh; | 
 |                                     return Eigen::MakeAutoDiffScalar(sinh(x.value()), | 
 |                                                                      x.derivatives() * cosh(x.value()));) | 
 |  | 
 | EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cosh, using std::sinh; using std::cosh; | 
 |                                     return Eigen::MakeAutoDiffScalar(cosh(x.value()), | 
 |                                                                      x.derivatives() * sinh(x.value()));) | 
 |  | 
 | #undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY | 
 |  | 
 | template <typename DerType> | 
 | struct NumTraits<AutoDiffScalar<DerType>> | 
 |     : NumTraits<typename NumTraits<typename internal::remove_all_t<DerType>::Scalar>::Real> { | 
 |   typedef internal::remove_all_t<DerType> DerTypeCleaned; | 
 |   typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerTypeCleaned::Scalar>::Real, | 
 |                                 DerTypeCleaned::RowsAtCompileTime, DerTypeCleaned::ColsAtCompileTime, 0, | 
 |                                 DerTypeCleaned::MaxRowsAtCompileTime, DerTypeCleaned::MaxColsAtCompileTime>> | 
 |       Real; | 
 |   typedef AutoDiffScalar<DerType> NonInteger; | 
 |   typedef AutoDiffScalar<DerType> Nested; | 
 |   typedef typename NumTraits<typename DerTypeCleaned::Scalar>::Literal Literal; | 
 |   enum { RequireInitialization = 1 }; | 
 | }; | 
 |  | 
 | namespace internal { | 
 | template <typename DerivativeType> | 
 | struct is_identically_zero_impl<AutoDiffScalar<DerivativeType>> { | 
 |   static inline bool run(const AutoDiffScalar<DerivativeType>& s) { | 
 |     const DerivativeType& derivatives = s.derivatives(); | 
 |     for (int i = 0; i < derivatives.size(); ++i) { | 
 |       if (!numext::is_exactly_zero(derivatives[i])) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |     return numext::is_exactly_zero(s.value()); | 
 |   } | 
 | }; | 
 | }  // namespace internal | 
 | }  // namespace Eigen | 
 |  | 
 | namespace std { | 
 |  | 
 | template <typename T> | 
 | class numeric_limits<Eigen::AutoDiffScalar<T>> : public numeric_limits<typename T::Scalar> {}; | 
 |  | 
 | template <typename T> | 
 | class numeric_limits<Eigen::AutoDiffScalar<T&>> : public numeric_limits<typename T::Scalar> {}; | 
 |  | 
 | }  // namespace std | 
 |  | 
 | #endif  // EIGEN_AUTODIFF_SCALAR_H |