| // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename Scalar> | 
 | void lmpar(Matrix<Scalar, Dynamic, Dynamic> &r, const VectorXi &ipvt, const Matrix<Scalar, Dynamic, 1> &diag, | 
 |            const Matrix<Scalar, Dynamic, 1> &qtb, Scalar delta, Scalar &par, Matrix<Scalar, Dynamic, 1> &x) { | 
 |   using std::abs; | 
 |   using std::sqrt; | 
 |   typedef DenseIndex Index; | 
 |  | 
 |   /* Local variables */ | 
 |   Index i, j, l; | 
 |   Scalar fp; | 
 |   Scalar parc, parl; | 
 |   Index iter; | 
 |   Scalar temp, paru; | 
 |   Scalar gnorm; | 
 |   Scalar dxnorm; | 
 |  | 
 |   /* Function Body */ | 
 |   const Scalar dwarf = (std::numeric_limits<Scalar>::min)(); | 
 |   const Index n = r.cols(); | 
 |   eigen_assert(n == diag.size()); | 
 |   eigen_assert(n == qtb.size()); | 
 |   eigen_assert(n == x.size()); | 
 |  | 
 |   Matrix<Scalar, Dynamic, 1> wa1, wa2; | 
 |  | 
 |   /* compute and store in x the gauss-newton direction. if the */ | 
 |   /* jacobian is rank-deficient, obtain a least squares solution. */ | 
 |   Index nsing = n - 1; | 
 |   wa1 = qtb; | 
 |   for (j = 0; j < n; ++j) { | 
 |     if (r(j, j) == 0. && nsing == n - 1) nsing = j - 1; | 
 |     if (nsing < n - 1) wa1[j] = 0.; | 
 |   } | 
 |   for (j = nsing; j >= 0; --j) { | 
 |     wa1[j] /= r(j, j); | 
 |     temp = wa1[j]; | 
 |     for (i = 0; i < j; ++i) wa1[i] -= r(i, j) * temp; | 
 |   } | 
 |  | 
 |   for (j = 0; j < n; ++j) x[ipvt[j]] = wa1[j]; | 
 |  | 
 |   /* initialize the iteration counter. */ | 
 |   /* evaluate the function at the origin, and test */ | 
 |   /* for acceptance of the gauss-newton direction. */ | 
 |   iter = 0; | 
 |   wa2 = diag.cwiseProduct(x); | 
 |   dxnorm = wa2.blueNorm(); | 
 |   fp = dxnorm - delta; | 
 |   if (fp <= Scalar(0.1) * delta) { | 
 |     par = 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   /* if the jacobian is not rank deficient, the newton */ | 
 |   /* step provides a lower bound, parl, for the zero of */ | 
 |   /* the function. otherwise set this bound to zero. */ | 
 |   parl = 0.; | 
 |   if (nsing >= n - 1) { | 
 |     for (j = 0; j < n; ++j) { | 
 |       l = ipvt[j]; | 
 |       wa1[j] = diag[l] * (wa2[l] / dxnorm); | 
 |     } | 
 |     // it's actually a triangularView.solveInplace(), though in a weird | 
 |     // way: | 
 |     for (j = 0; j < n; ++j) { | 
 |       Scalar sum = 0.; | 
 |       for (i = 0; i < j; ++i) sum += r(i, j) * wa1[i]; | 
 |       wa1[j] = (wa1[j] - sum) / r(j, j); | 
 |     } | 
 |     temp = wa1.blueNorm(); | 
 |     parl = fp / delta / temp / temp; | 
 |   } | 
 |  | 
 |   /* calculate an upper bound, paru, for the zero of the function. */ | 
 |   for (j = 0; j < n; ++j) wa1[j] = r.col(j).head(j + 1).dot(qtb.head(j + 1)) / diag[ipvt[j]]; | 
 |  | 
 |   gnorm = wa1.stableNorm(); | 
 |   paru = gnorm / delta; | 
 |   if (paru == 0.) paru = dwarf / (std::min)(delta, Scalar(0.1)); | 
 |  | 
 |   /* if the input par lies outside of the interval (parl,paru), */ | 
 |   /* set par to the closer endpoint. */ | 
 |   par = (std::max)(par, parl); | 
 |   par = (std::min)(par, paru); | 
 |   if (par == 0.) par = gnorm / dxnorm; | 
 |  | 
 |   /* beginning of an iteration. */ | 
 |   while (true) { | 
 |     ++iter; | 
 |  | 
 |     /* evaluate the function at the current value of par. */ | 
 |     if (par == 0.) par = (std::max)(dwarf, Scalar(.001) * paru); /* Computing MAX */ | 
 |     wa1 = sqrt(par) * diag; | 
 |  | 
 |     Matrix<Scalar, Dynamic, 1> sdiag(n); | 
 |     qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag); | 
 |  | 
 |     wa2 = diag.cwiseProduct(x); | 
 |     dxnorm = wa2.blueNorm(); | 
 |     temp = fp; | 
 |     fp = dxnorm - delta; | 
 |  | 
 |     /* if the function is small enough, accept the current value */ | 
 |     /* of par. also test for the exceptional cases where parl */ | 
 |     /* is zero or the number of iterations has reached 10. */ | 
 |     if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10) break; | 
 |  | 
 |     /* compute the newton correction. */ | 
 |     for (j = 0; j < n; ++j) { | 
 |       l = ipvt[j]; | 
 |       wa1[j] = diag[l] * (wa2[l] / dxnorm); | 
 |     } | 
 |     for (j = 0; j < n; ++j) { | 
 |       wa1[j] /= sdiag[j]; | 
 |       temp = wa1[j]; | 
 |       for (i = j + 1; i < n; ++i) wa1[i] -= r(i, j) * temp; | 
 |     } | 
 |     temp = wa1.blueNorm(); | 
 |     parc = fp / delta / temp / temp; | 
 |  | 
 |     /* depending on the sign of the function, update parl or paru. */ | 
 |     if (fp > 0.) parl = (std::max)(parl, par); | 
 |     if (fp < 0.) paru = (std::min)(paru, par); | 
 |  | 
 |     /* compute an improved estimate for par. */ | 
 |     /* Computing MAX */ | 
 |     par = (std::max)(parl, par + parc); | 
 |  | 
 |     /* end of an iteration. */ | 
 |   } | 
 |  | 
 |   /* termination. */ | 
 |   if (iter == 0) par = 0.; | 
 |   return; | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | void lmpar2(const ColPivHouseholderQR<Matrix<Scalar, Dynamic, Dynamic> > &qr, const Matrix<Scalar, Dynamic, 1> &diag, | 
 |             const Matrix<Scalar, Dynamic, 1> &qtb, Scalar delta, Scalar &par, Matrix<Scalar, Dynamic, 1> &x) | 
 |  | 
 | { | 
 |   using std::abs; | 
 |   using std::sqrt; | 
 |   typedef DenseIndex Index; | 
 |  | 
 |   /* Local variables */ | 
 |   Index j; | 
 |   Scalar fp; | 
 |   Scalar parc, parl; | 
 |   Index iter; | 
 |   Scalar temp, paru; | 
 |   Scalar gnorm; | 
 |   Scalar dxnorm; | 
 |  | 
 |   /* Function Body */ | 
 |   const Scalar dwarf = (std::numeric_limits<Scalar>::min)(); | 
 |   const Index n = qr.matrixQR().cols(); | 
 |   eigen_assert(n == diag.size()); | 
 |   eigen_assert(n == qtb.size()); | 
 |  | 
 |   Matrix<Scalar, Dynamic, 1> wa1, wa2; | 
 |  | 
 |   /* compute and store in x the gauss-newton direction. if the */ | 
 |   /* jacobian is rank-deficient, obtain a least squares solution. */ | 
 |  | 
 |   //    const Index rank = qr.nonzeroPivots(); // exactly double(0.) | 
 |   const Index rank = qr.rank();  // use a threshold | 
 |   wa1 = qtb; | 
 |   wa1.tail(n - rank).setZero(); | 
 |   qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank)); | 
 |  | 
 |   x = qr.colsPermutation() * wa1; | 
 |  | 
 |   /* initialize the iteration counter. */ | 
 |   /* evaluate the function at the origin, and test */ | 
 |   /* for acceptance of the gauss-newton direction. */ | 
 |   iter = 0; | 
 |   wa2 = diag.cwiseProduct(x); | 
 |   dxnorm = wa2.blueNorm(); | 
 |   fp = dxnorm - delta; | 
 |   if (fp <= Scalar(0.1) * delta) { | 
 |     par = 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   /* if the jacobian is not rank deficient, the newton */ | 
 |   /* step provides a lower bound, parl, for the zero of */ | 
 |   /* the function. otherwise set this bound to zero. */ | 
 |   parl = 0.; | 
 |   if (rank == n) { | 
 |     wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2) / dxnorm; | 
 |     qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1); | 
 |     temp = wa1.blueNorm(); | 
 |     parl = fp / delta / temp / temp; | 
 |   } | 
 |  | 
 |   /* calculate an upper bound, paru, for the zero of the function. */ | 
 |   for (j = 0; j < n; ++j) | 
 |     wa1[j] = qr.matrixQR().col(j).head(j + 1).dot(qtb.head(j + 1)) / diag[qr.colsPermutation().indices()(j)]; | 
 |  | 
 |   gnorm = wa1.stableNorm(); | 
 |   paru = gnorm / delta; | 
 |   if (paru == 0.) paru = dwarf / (std::min)(delta, Scalar(0.1)); | 
 |  | 
 |   /* if the input par lies outside of the interval (parl,paru), */ | 
 |   /* set par to the closer endpoint. */ | 
 |   par = (std::max)(par, parl); | 
 |   par = (std::min)(par, paru); | 
 |   if (par == 0.) par = gnorm / dxnorm; | 
 |  | 
 |   /* beginning of an iteration. */ | 
 |   Matrix<Scalar, Dynamic, Dynamic> s = qr.matrixQR(); | 
 |   while (true) { | 
 |     ++iter; | 
 |  | 
 |     /* evaluate the function at the current value of par. */ | 
 |     if (par == 0.) par = (std::max)(dwarf, Scalar(.001) * paru); /* Computing MAX */ | 
 |     wa1 = sqrt(par) * diag; | 
 |  | 
 |     Matrix<Scalar, Dynamic, 1> sdiag(n); | 
 |     qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag); | 
 |  | 
 |     wa2 = diag.cwiseProduct(x); | 
 |     dxnorm = wa2.blueNorm(); | 
 |     temp = fp; | 
 |     fp = dxnorm - delta; | 
 |  | 
 |     /* if the function is small enough, accept the current value */ | 
 |     /* of par. also test for the exceptional cases where parl */ | 
 |     /* is zero or the number of iterations has reached 10. */ | 
 |     if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10) break; | 
 |  | 
 |     /* compute the newton correction. */ | 
 |     wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2 / dxnorm); | 
 |     // we could almost use this here, but the diagonal is outside qr, in sdiag[] | 
 |     // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1); | 
 |     for (j = 0; j < n; ++j) { | 
 |       wa1[j] /= sdiag[j]; | 
 |       temp = wa1[j]; | 
 |       for (Index i = j + 1; i < n; ++i) wa1[i] -= s(i, j) * temp; | 
 |     } | 
 |     temp = wa1.blueNorm(); | 
 |     parc = fp / delta / temp / temp; | 
 |  | 
 |     /* depending on the sign of the function, update parl or paru. */ | 
 |     if (fp > 0.) parl = (std::max)(parl, par); | 
 |     if (fp < 0.) paru = (std::min)(paru, par); | 
 |  | 
 |     /* compute an improved estimate for par. */ | 
 |     par = (std::max)(parl, par + parc); | 
 |   } | 
 |   if (iter == 0) par = 0.; | 
 |   return; | 
 | } | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen |