| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/Polynomials> | 
 | #include <iostream> | 
 | #include <algorithm> | 
 |  | 
 | using namespace std; | 
 |  | 
 | namespace Eigen { | 
 | namespace internal { | 
 | template <int Size> | 
 | struct increment_if_fixed_size { | 
 |   enum { ret = (Size == Dynamic) ? Dynamic : Size + 1 }; | 
 | }; | 
 | }  // namespace internal | 
 | }  // namespace Eigen | 
 |  | 
 | template <typename PolynomialType> | 
 | PolynomialType polyder(const PolynomialType& p) { | 
 |   typedef typename PolynomialType::Scalar Scalar; | 
 |   PolynomialType res(p.size()); | 
 |   for (Index i = 1; i < p.size(); ++i) res[i - 1] = p[i] * Scalar(i); | 
 |   res[p.size() - 1] = 0.; | 
 |   return res; | 
 | } | 
 |  | 
 | template <int Deg, typename POLYNOMIAL, typename SOLVER> | 
 | bool aux_evalSolver(const POLYNOMIAL& pols, SOLVER& psolve) { | 
 |   typedef typename POLYNOMIAL::Scalar Scalar; | 
 |   typedef typename POLYNOMIAL::RealScalar RealScalar; | 
 |  | 
 |   typedef typename SOLVER::RootsType RootsType; | 
 |   typedef Matrix<RealScalar, Deg, 1> EvalRootsType; | 
 |  | 
 |   const Index deg = pols.size() - 1; | 
 |  | 
 |   // Test template constructor from coefficient vector | 
 |   SOLVER solve_constr(pols); | 
 |  | 
 |   psolve.compute(pols); | 
 |   const RootsType& roots(psolve.roots()); | 
 |   EvalRootsType evr(deg); | 
 |   POLYNOMIAL pols_der = polyder(pols); | 
 |   EvalRootsType der(deg); | 
 |   for (int i = 0; i < roots.size(); ++i) { | 
 |     evr[i] = std::abs(poly_eval(pols, roots[i])); | 
 |     der[i] = numext::maxi(RealScalar(1.), std::abs(poly_eval(pols_der, roots[i]))); | 
 |   } | 
 |  | 
 |   // we need to divide by the magnitude of the derivative because | 
 |   // with a high derivative is very small error in the value of the root | 
 |   // yiels a very large error in the polynomial evaluation. | 
 |   bool evalToZero = (evr.cwiseQuotient(der)).isZero(test_precision<Scalar>()); | 
 |   if (!evalToZero) { | 
 |     cerr << "WRONG root: " << endl; | 
 |     cerr << "Polynomial: " << pols.transpose() << endl; | 
 |     cerr << "Roots found: " << roots.transpose() << endl; | 
 |     cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; | 
 |     cerr << endl; | 
 |   } | 
 |  | 
 |   std::vector<RealScalar> rootModuli(roots.size()); | 
 |   Map<EvalRootsType> aux(&rootModuli[0], roots.size()); | 
 |   aux = roots.array().abs(); | 
 |   std::sort(rootModuli.begin(), rootModuli.end()); | 
 |   bool distinctModuli = true; | 
 |   for (size_t i = 1; i < rootModuli.size() && distinctModuli; ++i) { | 
 |     if (internal::isApprox(rootModuli[i], rootModuli[i - 1])) { | 
 |       distinctModuli = false; | 
 |     } | 
 |   } | 
 |   VERIFY(evalToZero || !distinctModuli); | 
 |  | 
 |   return distinctModuli; | 
 | } | 
 |  | 
 | template <int Deg, typename POLYNOMIAL> | 
 | void evalSolver(const POLYNOMIAL& pols) { | 
 |   typedef typename POLYNOMIAL::Scalar Scalar; | 
 |  | 
 |   typedef PolynomialSolver<Scalar, Deg> PolynomialSolverType; | 
 |  | 
 |   PolynomialSolverType psolve; | 
 |   aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>(pols, psolve); | 
 | } | 
 |  | 
 | template <int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS> | 
 | void evalSolverSugarFunction(const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots) { | 
 |   using std::sqrt; | 
 |   typedef typename POLYNOMIAL::Scalar Scalar; | 
 |   typedef typename POLYNOMIAL::RealScalar RealScalar; | 
 |  | 
 |   typedef PolynomialSolver<Scalar, Deg> PolynomialSolverType; | 
 |  | 
 |   PolynomialSolverType psolve; | 
 |   if (aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>(pols, psolve)) { | 
 |     // It is supposed that | 
 |     //  1) the roots found are correct | 
 |     //  2) the roots have distinct moduli | 
 |  | 
 |     // Test realRoots | 
 |     std::vector<RealScalar> calc_realRoots; | 
 |     psolve.realRoots(calc_realRoots, test_precision<RealScalar>()); | 
 |     VERIFY_IS_EQUAL(calc_realRoots.size(), (size_t)real_roots.size()); | 
 |  | 
 |     const RealScalar psPrec = sqrt(test_precision<RealScalar>()); | 
 |  | 
 |     for (size_t i = 0; i < calc_realRoots.size(); ++i) { | 
 |       bool found = false; | 
 |       for (size_t j = 0; j < calc_realRoots.size() && !found; ++j) { | 
 |         if (internal::isApprox(calc_realRoots[i], real_roots[j], psPrec)) { | 
 |           found = true; | 
 |         } | 
 |       } | 
 |       VERIFY(found); | 
 |     } | 
 |  | 
 |     // Test greatestRoot | 
 |     VERIFY(internal::isApprox(roots.array().abs().maxCoeff(), abs(psolve.greatestRoot()), psPrec)); | 
 |  | 
 |     // Test smallestRoot | 
 |     VERIFY(internal::isApprox(roots.array().abs().minCoeff(), abs(psolve.smallestRoot()), psPrec)); | 
 |  | 
 |     bool hasRealRoot; | 
 |     // Test absGreatestRealRoot | 
 |     RealScalar r = psolve.absGreatestRealRoot(hasRealRoot); | 
 |     VERIFY(hasRealRoot == (real_roots.size() > 0)); | 
 |     if (hasRealRoot) { | 
 |       VERIFY(internal::isApprox(real_roots.array().abs().maxCoeff(), abs(r), psPrec)); | 
 |     } | 
 |  | 
 |     // Test absSmallestRealRoot | 
 |     r = psolve.absSmallestRealRoot(hasRealRoot); | 
 |     VERIFY(hasRealRoot == (real_roots.size() > 0)); | 
 |     if (hasRealRoot) { | 
 |       VERIFY(internal::isApprox(real_roots.array().abs().minCoeff(), abs(r), psPrec)); | 
 |     } | 
 |  | 
 |     // Test greatestRealRoot | 
 |     r = psolve.greatestRealRoot(hasRealRoot); | 
 |     VERIFY(hasRealRoot == (real_roots.size() > 0)); | 
 |     if (hasRealRoot) { | 
 |       VERIFY(internal::isApprox(real_roots.array().maxCoeff(), r, psPrec)); | 
 |     } | 
 |  | 
 |     // Test smallestRealRoot | 
 |     r = psolve.smallestRealRoot(hasRealRoot); | 
 |     VERIFY(hasRealRoot == (real_roots.size() > 0)); | 
 |     if (hasRealRoot) { | 
 |       VERIFY(internal::isApprox(real_roots.array().minCoeff(), r, psPrec)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <typename Scalar_, int Deg_> | 
 | void polynomialsolver(int deg) { | 
 |   typedef typename NumTraits<Scalar_>::Real RealScalar; | 
 |   typedef internal::increment_if_fixed_size<Deg_> Dim; | 
 |   typedef Matrix<Scalar_, Dim::ret, 1> PolynomialType; | 
 |   typedef Matrix<Scalar_, Deg_, 1> EvalRootsType; | 
 |   typedef Matrix<RealScalar, Deg_, 1> RealRootsType; | 
 |  | 
 |   cout << "Standard cases" << endl; | 
 |   PolynomialType pols = PolynomialType::Random(deg + 1); | 
 |   evalSolver<Deg_, PolynomialType>(pols); | 
 |  | 
 |   cout << "Hard cases" << endl; | 
 |   Scalar_ multipleRoot = internal::random<Scalar_>(); | 
 |   EvalRootsType allRoots = EvalRootsType::Constant(deg, multipleRoot); | 
 |   roots_to_monicPolynomial(allRoots, pols); | 
 |   evalSolver<Deg_, PolynomialType>(pols); | 
 |  | 
 |   cout << "Test sugar" << endl; | 
 |   RealRootsType realRoots = RealRootsType::Random(deg); | 
 |   roots_to_monicPolynomial(realRoots, pols); | 
 |   evalSolverSugarFunction<Deg_>(pols, realRoots.template cast<std::complex<RealScalar> >().eval(), realRoots); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(polynomialsolver) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1((polynomialsolver<float, 1>(1))); | 
 |     CALL_SUBTEST_2((polynomialsolver<double, 2>(2))); | 
 |     CALL_SUBTEST_3((polynomialsolver<double, 3>(3))); | 
 |     CALL_SUBTEST_4((polynomialsolver<float, 4>(4))); | 
 |     CALL_SUBTEST_5((polynomialsolver<double, 5>(5))); | 
 |     CALL_SUBTEST_6((polynomialsolver<float, 6>(6))); | 
 |     CALL_SUBTEST_7((polynomialsolver<float, 7>(7))); | 
 |     CALL_SUBTEST_8((polynomialsolver<double, 8>(8))); | 
 |  | 
 |     CALL_SUBTEST_9((polynomialsolver<float, Dynamic>(internal::random<int>(9, 13)))); | 
 |     CALL_SUBTEST_10((polynomialsolver<double, Dynamic>(internal::random<int>(9, 13)))); | 
 |     CALL_SUBTEST_11((polynomialsolver<float, Dynamic>(1))); | 
 |     CALL_SUBTEST_12((polynomialsolver<std::complex<double>, Dynamic>(internal::random<int>(2, 13)))); | 
 |   } | 
 | } |