blob: 82ca71215fab9d025abf307b0d67bfcb989b9e3c [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*****************************************************************
* TensorSyclPlaceHolderExpr.h
*
* \brief:
* This is the specialisation of the placeholder expression based on the
* operation type
*
*****************************************************************/
#ifndef UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP
#define UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP
namespace Eigen {
namespace internal {
template<typename CoeffReturnType> struct syclGenericBufferReducer{
template<typename BufferTOut, typename BufferTIn>
static void run(BufferTOut& bufOut, BufferTIn& bufI, const Eigen::SyclDevice& dev, size_t length, size_t local){
do {
auto f = [length, local, bufOut, &bufI](cl::sycl::handler& h) mutable {
cl::sycl::nd_range<1> r{cl::sycl::range<1>{std::max(length, local)},
cl::sycl::range<1>{std::min(length, local)}};
/* Two accessors are used: one to the buffer that is being reduced,
* and a second to local memory, used to store intermediate data. */
auto aI =bufI.template get_access<cl::sycl::access::mode::read_write>(h);
auto aOut =bufOut.template get_access<cl::sycl::access::mode::discard_write>(h);
typedef decltype(aI) InputAccessor;
typedef decltype(aOut) OutputAccessor;
typedef cl::sycl::accessor<CoeffReturnType, 1, cl::sycl::access::mode::read_write,cl::sycl::access::target::local> LocalAccessor;
LocalAccessor scratch(cl::sycl::range<1>(local), h);
/* The parallel_for invocation chosen is the variant with an nd_item
* parameter, since the code requires barriers for correctness. */
h.parallel_for(r, TensorSycl::internal::GenericKernelReducer< CoeffReturnType, OutputAccessor, InputAccessor, LocalAccessor>(aOut, aI, scratch, length, local));
};
dev.sycl_queue().submit(f);
dev.asynchronousExec();
/* At this point, you could queue::wait_and_throw() to ensure that
* errors are caught quickly. However, this would likely impact
* performance negatively. */
length = length / local;
} while (length > 1);
}
};
/// Self is useless here because in expression construction we are going to treat reduction as a leafnode.
/// we want to take reduction child and then build a construction and apply the full reducer function on it. Fullreducre applies the
/// reduction operation on the child of the reduction. once it is done the reduction is an empty shell and can be thrown away and treated as
// a leafNode.
template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, const Eigen::SyclDevice, Vectorizable> {
typedef typename Self::CoeffReturnType CoeffReturnType;
static const bool HasOptimizedImplementation = false;
static void run(const Self& self, Op& reducer, const Eigen::SyclDevice& dev, CoeffReturnType* output) {
typedef const typename Self::ChildType HostExpr; /// this is the child of reduction
typedef Eigen::TensorSycl::internal::FunctorExtractor<TensorEvaluator<HostExpr, const Eigen::SyclDevice> > FunctorExpr;
FunctorExpr functors = TensorSycl::internal::extractFunctors(self.impl());
int red_factor =256; /// initial reduction. If the size is less than red_factor we only creates one thread.
size_t inputSize =self.impl().dimensions().TotalSize();
size_t rng = inputSize/red_factor; // the total number of thread initially is half the size of the input
size_t remaining = inputSize% red_factor;
if(rng ==0) {
red_factor=1;
};
size_t tileSize =dev.sycl_queue().get_device(). template get_info<cl::sycl::info::device::max_work_group_size>()/2;
size_t GRange=std::max((size_t )1, rng);
// convert global range to power of 2 for redecution
GRange--;
GRange |= GRange >> 1;
GRange |= GRange >> 2;
GRange |= GRange >> 4;
GRange |= GRange >> 8;
GRange |= GRange >> 16;
#if __x86_64__ || __ppc64__ || _WIN64
GRange |= GRange >> 32;
#endif
GRange++;
size_t outTileSize = tileSize;
/// if the shared memory is less than the GRange, we set shared_mem size to the TotalSize and in this case one kernel would be created for recursion to reduce all to one.
if (GRange < outTileSize) outTileSize=GRange;
/// creating the shared memory for calculating reduction.
/// This one is used to collect all the reduced value of shared memory as we dont have global barrier on GPU. Once it is saved we can
/// recursively apply reduction on it in order to reduce the whole.
auto temp_global_buffer =cl::sycl::buffer<CoeffReturnType, 1>(cl::sycl::range<1>(GRange));
typedef typename Eigen::internal::remove_all<decltype(self.xprDims())>::type Dims;
// Dims dims= self.xprDims();
//Op functor = reducer;
dev.sycl_queue().submit([&](cl::sycl::handler &cgh) {
// this is a work around for gcc bug
typedef decltype(TensorSycl::internal::createTupleOfAccessors(cgh, self.impl())) TupleType;
// create a tuple of accessors from Evaluator
TupleType tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl());
auto tmp_global_accessor = temp_global_buffer. template get_access<cl::sycl::access::mode::read_write, cl::sycl::access::target::global_buffer>(cgh);
typedef decltype(tmp_global_accessor) OutAccessor;
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(outTileSize)),
TensorSycl::internal::FullReductionKernelFunctor<CoeffReturnType, OutAccessor, HostExpr, FunctorExpr, Op, Dims, size_t, TupleType>
(tmp_global_accessor, rng, remaining, red_factor, reducer, self.xprDims(), functors, tuple_of_accessors));
});
dev.asynchronousExec();
// getting final out buffer at the moment the created buffer is true because there is no need for assign
auto out_buffer =dev.get_sycl_buffer(output);
/// This is used to recursively reduce the tmp value to an element of 1;
syclGenericBufferReducer<CoeffReturnType>::run(out_buffer, temp_global_buffer,dev, GRange, outTileSize);
}
};
template <typename Self, typename Op>
struct InnerReducer<Self, Op, const Eigen::SyclDevice> {
typedef typename Self::CoeffReturnType CoeffReturnType;
static const bool HasOptimizedImplementation = false;
static bool run(const Self& self, Op& reducer, const Eigen::SyclDevice& dev, CoeffReturnType* output, typename Self::Index , typename Self::Index num_coeffs_to_preserve) {
typedef const typename Self::ChildType HostExpr; /// this is the child of reduction
typedef Eigen::TensorSycl::internal::FunctorExtractor<TensorEvaluator<HostExpr, const Eigen::SyclDevice> > FunctorExpr;
FunctorExpr functors = TensorSycl::internal::extractFunctors(self.impl());
typename Self::Index range, GRange, tileSize;
typedef typename Eigen::internal::remove_all<decltype(self.xprDims())>::type Dims;
// getting final out buffer at the moment the created buffer is true because there is no need for assign
/// creating the shared memory for calculating reduction.
/// This one is used to collect all the reduced value of shared memory as we dont have global barrier on GPU. Once it is saved we can
/// recursively apply reduction on it in order to reduce the whole.
dev.parallel_for_setup(num_coeffs_to_preserve, tileSize, range, GRange);
dev.sycl_queue().submit([&](cl::sycl::handler &cgh) {
// this is work around for gcc bug.
typedef decltype(TensorSycl::internal::createTupleOfAccessors(cgh, self.impl())) Tuple_of_Acc;
// create a tuple of accessors from Evaluator
Tuple_of_Acc tuple_of_accessors = TensorSycl::internal::createTupleOfAccessors(cgh, self.impl());
auto output_accessor = dev.template get_sycl_accessor<cl::sycl::access::mode::discard_write>(cgh, output);
cgh.parallel_for( cl::sycl::nd_range<1>(cl::sycl::range<1>(GRange), cl::sycl::range<1>(tileSize)),
TensorSycl::internal::ReductionFunctor<HostExpr, FunctorExpr, Tuple_of_Acc, Dims, Op, typename Self::Index>
(output_accessor, functors, tuple_of_accessors, self.xprDims(), reducer, range));
});
dev.asynchronousExec();
return false;
}
};
} // end namespace internal
} // namespace Eigen
#endif // UNSUPPORTED_EIGEN_CXX11_SRC_TENSOR_TENSOR_REDUCTION_SYCL_HPP