| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_SELFADJOINTMATRIX_H | 
 | #define EIGEN_SELFADJOINTMATRIX_H | 
 |  | 
 | /** \class SelfAdjointView | 
 |   * \nonstableyet | 
 |   * | 
 |   * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix | 
 |   * | 
 |   * \param MatrixType the type of the dense matrix storing the coefficients | 
 |   * \param TriangularPart can be either \c Lower or \c Upper | 
 |   * | 
 |   * This class is an expression of a sefladjoint matrix from a triangular part of a matrix | 
 |   * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() | 
 |   * and most of the time this is the only way that it is used. | 
 |   * | 
 |   * \sa class TriangularBase, MatrixBase::selfAdjointView() | 
 |   */ | 
 | template<typename MatrixType, unsigned int UpLo> | 
 | struct ei_traits<SelfAdjointView<MatrixType, UpLo> > : ei_traits<MatrixType> | 
 | { | 
 |   typedef typename ei_nested<MatrixType>::type MatrixTypeNested; | 
 |   typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested; | 
 |   typedef MatrixType ExpressionType; | 
 |   enum { | 
 |     Mode = UpLo | SelfAdjoint, | 
 |     Flags =  _MatrixTypeNested::Flags & (HereditaryBits) | 
 |            & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved | 
 |     CoeffReadCost = _MatrixTypeNested::CoeffReadCost | 
 |   }; | 
 | }; | 
 |  | 
 | template <typename Lhs, int LhsMode, bool LhsIsVector, | 
 |           typename Rhs, int RhsMode, bool RhsIsVector> | 
 | struct SelfadjointProductMatrix; | 
 |  | 
 | // FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ?? | 
 | template<typename MatrixType, unsigned int UpLo> class SelfAdjointView | 
 |   : public TriangularBase<SelfAdjointView<MatrixType, UpLo> > | 
 | { | 
 |   public: | 
 |  | 
 |     typedef TriangularBase<SelfAdjointView> Base; | 
 |     typedef typename ei_traits<SelfAdjointView>::Scalar Scalar; | 
 |     typedef typename MatrixType::Index Index; | 
 |  | 
 |     enum { | 
 |       Mode = ei_traits<SelfAdjointView>::Mode | 
 |     }; | 
 |     typedef typename MatrixType::PlainObject PlainObject; | 
 |  | 
 |     inline SelfAdjointView(const MatrixType& matrix) : m_matrix(matrix) | 
 |     { ei_assert(ei_are_flags_consistent<Mode>::ret); } | 
 |  | 
 |     inline Index rows() const { return m_matrix.rows(); } | 
 |     inline Index cols() const { return m_matrix.cols(); } | 
 |     inline Index outerStride() const { return m_matrix.outerStride(); } | 
 |     inline Index innerStride() const { return m_matrix.innerStride(); } | 
 |  | 
 |     /** \sa MatrixBase::coeff() | 
 |       * \warning the coordinates must fit into the referenced triangular part | 
 |       */ | 
 |     inline Scalar coeff(Index row, Index col) const | 
 |     { | 
 |       Base::check_coordinates_internal(row, col); | 
 |       return m_matrix.coeff(row, col); | 
 |     } | 
 |  | 
 |     /** \sa MatrixBase::coeffRef() | 
 |       * \warning the coordinates must fit into the referenced triangular part | 
 |       */ | 
 |     inline Scalar& coeffRef(Index row, Index col) | 
 |     { | 
 |       Base::check_coordinates_internal(row, col); | 
 |       return m_matrix.const_cast_derived().coeffRef(row, col); | 
 |     } | 
 |  | 
 |     /** \internal */ | 
 |     const MatrixType& _expression() const { return m_matrix; } | 
 |  | 
 |     const MatrixType& nestedExpression() const { return m_matrix; } | 
 |     MatrixType& nestedExpression() { return const_cast<MatrixType&>(m_matrix); } | 
 |  | 
 |     /** Efficient self-adjoint matrix times vector/matrix product */ | 
 |     template<typename OtherDerived> | 
 |     SelfadjointProductMatrix<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime> | 
 |     operator*(const MatrixBase<OtherDerived>& rhs) const | 
 |     { | 
 |       return SelfadjointProductMatrix | 
 |               <MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime> | 
 |               (m_matrix, rhs.derived()); | 
 |     } | 
 |  | 
 |     /** Efficient vector/matrix times self-adjoint matrix product */ | 
 |     template<typename OtherDerived> friend | 
 |     SelfadjointProductMatrix<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false> | 
 |     operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs) | 
 |     { | 
 |       return SelfadjointProductMatrix | 
 |               <OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false> | 
 |               (lhs.derived(),rhs.m_matrix); | 
 |     } | 
 |  | 
 |     /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this: | 
 |       * \f$ this = this + \alpha ( u v^* + v u^*) \f$ | 
 |       * \returns a reference to \c *this | 
 |       * | 
 |       * The vectors \a u and \c v \b must be column vectors, however they can be | 
 |       * a adjoint expression without any overhead. Only the meaningful triangular | 
 |       * part of the matrix is updated, the rest is left unchanged. | 
 |       * | 
 |       * \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar) | 
 |       */ | 
 |     template<typename DerivedU, typename DerivedV> | 
 |     SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha = Scalar(1)); | 
 |  | 
 |     /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: | 
 |       * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. | 
 |       * | 
 |       * \returns a reference to \c *this | 
 |       * | 
 |       * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply | 
 |       * call this function with u.adjoint(). | 
 |       * | 
 |       * \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar) | 
 |       */ | 
 |     template<typename DerivedU> | 
 |     SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, Scalar alpha = Scalar(1)); | 
 |  | 
 | /////////// Cholesky module /////////// | 
 |  | 
 |     const LLT<PlainObject, UpLo> llt() const; | 
 |     const LDLT<PlainObject, UpLo> ldlt() const; | 
 |  | 
 | /////////// Eigenvalue module /////////// | 
 |  | 
 |     /** Real part of #Scalar */ | 
 |     typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |     /** Return type of eigenvalues() */ | 
 |     typedef Matrix<RealScalar, ei_traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType; | 
 |  | 
 |     EigenvaluesReturnType eigenvalues() const; | 
 |     RealScalar operatorNorm() const; | 
 |  | 
 |   protected: | 
 |     const typename MatrixType::Nested m_matrix; | 
 | }; | 
 |  | 
 |  | 
 | // template<typename OtherDerived, typename MatrixType, unsigned int UpLo> | 
 | // ei_selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> > | 
 | // operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs) | 
 | // { | 
 | //   return ei_matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs); | 
 | // } | 
 |  | 
 | // selfadjoint to dense matrix | 
 |  | 
 | template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite> | 
 | struct ei_triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount, ClearOpposite> | 
 | { | 
 |   enum { | 
 |     col = (UnrollCount-1) / Derived1::RowsAtCompileTime, | 
 |     row = (UnrollCount-1) % Derived1::RowsAtCompileTime | 
 |   }; | 
 |  | 
 |   inline static void run(Derived1 &dst, const Derived2 &src) | 
 |   { | 
 |     ei_triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount-1, ClearOpposite>::run(dst, src); | 
 |  | 
 |     if(row == col) | 
 |       dst.coeffRef(row, col) = ei_real(src.coeff(row, col)); | 
 |     else if(row < col) | 
 |       dst.coeffRef(col, row) = ei_conj(dst.coeffRef(row, col) = src.coeff(row, col)); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Derived1, typename Derived2, bool ClearOpposite> | 
 | struct ei_triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, 0, ClearOpposite> | 
 | { | 
 |   inline static void run(Derived1 &, const Derived2 &) {} | 
 | }; | 
 |  | 
 | template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite> | 
 | struct ei_triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount, ClearOpposite> | 
 | { | 
 |   enum { | 
 |     col = (UnrollCount-1) / Derived1::RowsAtCompileTime, | 
 |     row = (UnrollCount-1) % Derived1::RowsAtCompileTime | 
 |   }; | 
 |  | 
 |   inline static void run(Derived1 &dst, const Derived2 &src) | 
 |   { | 
 |     ei_triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount-1, ClearOpposite>::run(dst, src); | 
 |  | 
 |     if(row == col) | 
 |       dst.coeffRef(row, col) = ei_real(src.coeff(row, col)); | 
 |     else if(row > col) | 
 |       dst.coeffRef(col, row) = ei_conj(dst.coeffRef(row, col) = src.coeff(row, col)); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Derived1, typename Derived2, bool ClearOpposite> | 
 | struct ei_triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, 0, ClearOpposite> | 
 | { | 
 |   inline static void run(Derived1 &, const Derived2 &) {} | 
 | }; | 
 |  | 
 | template<typename Derived1, typename Derived2, bool ClearOpposite> | 
 | struct ei_triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, Dynamic, ClearOpposite> | 
 | { | 
 |   typedef typename Derived1::Index Index; | 
 |   inline static void run(Derived1 &dst, const Derived2 &src) | 
 |   { | 
 |     for(Index j = 0; j < dst.cols(); ++j) | 
 |     { | 
 |       for(Index i = 0; i < j; ++i) | 
 |       { | 
 |         dst.copyCoeff(i, j, src); | 
 |         dst.coeffRef(j,i) = ei_conj(dst.coeff(i,j)); | 
 |       } | 
 |       dst.copyCoeff(j, j, src); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Derived1, typename Derived2, bool ClearOpposite> | 
 | struct ei_triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, Dynamic, ClearOpposite> | 
 | { | 
 |   inline static void run(Derived1 &dst, const Derived2 &src) | 
 |   { | 
 |   typedef typename Derived1::Index Index; | 
 |     for(Index i = 0; i < dst.rows(); ++i) | 
 |     { | 
 |       for(Index j = 0; j < i; ++j) | 
 |       { | 
 |         dst.copyCoeff(i, j, src); | 
 |         dst.coeffRef(j,i) = ei_conj(dst.coeff(i,j)); | 
 |       } | 
 |       dst.copyCoeff(i, i, src); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | /*************************************************************************** | 
 | * Implementation of MatrixBase methods | 
 | ***************************************************************************/ | 
 |  | 
 | template<typename Derived> | 
 | template<unsigned int UpLo> | 
 | const SelfAdjointView<Derived, UpLo> MatrixBase<Derived>::selfadjointView() const | 
 | { | 
 |   return derived(); | 
 | } | 
 |  | 
 | template<typename Derived> | 
 | template<unsigned int UpLo> | 
 | SelfAdjointView<Derived, UpLo> MatrixBase<Derived>::selfadjointView() | 
 | { | 
 |   return derived(); | 
 | } | 
 |  | 
 | #endif // EIGEN_SELFADJOINTMATRIX_H |