|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_COMPRESSED_STORAGE_H | 
|  | #define EIGEN_COMPRESSED_STORAGE_H | 
|  |  | 
|  | /** Stores a sparse set of values as a list of values and a list of indices. | 
|  | * | 
|  | */ | 
|  | template<typename _Scalar,typename _Index> | 
|  | class CompressedStorage | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef _Scalar Scalar; | 
|  | typedef _Index Index; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | public: | 
|  |  | 
|  | CompressedStorage() | 
|  | : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) | 
|  | {} | 
|  |  | 
|  | CompressedStorage(size_t size) | 
|  | : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) | 
|  | { | 
|  | resize(size); | 
|  | } | 
|  |  | 
|  | CompressedStorage(const CompressedStorage& other) | 
|  | : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) | 
|  | { | 
|  | *this = other; | 
|  | } | 
|  |  | 
|  | CompressedStorage& operator=(const CompressedStorage& other) | 
|  | { | 
|  | resize(other.size()); | 
|  | memcpy(m_values, other.m_values, m_size * sizeof(Scalar)); | 
|  | memcpy(m_indices, other.m_indices, m_size * sizeof(Index)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | void swap(CompressedStorage& other) | 
|  | { | 
|  | std::swap(m_values, other.m_values); | 
|  | std::swap(m_indices, other.m_indices); | 
|  | std::swap(m_size, other.m_size); | 
|  | std::swap(m_allocatedSize, other.m_allocatedSize); | 
|  | } | 
|  |  | 
|  | ~CompressedStorage() | 
|  | { | 
|  | delete[] m_values; | 
|  | delete[] m_indices; | 
|  | } | 
|  |  | 
|  | void reserve(size_t size) | 
|  | { | 
|  | size_t newAllocatedSize = m_size + size; | 
|  | if (newAllocatedSize > m_allocatedSize) | 
|  | reallocate(newAllocatedSize); | 
|  | } | 
|  |  | 
|  | void squeeze() | 
|  | { | 
|  | if (m_allocatedSize>m_size) | 
|  | reallocate(m_size); | 
|  | } | 
|  |  | 
|  | void resize(size_t size, float reserveSizeFactor = 0) | 
|  | { | 
|  | if (m_allocatedSize<size) | 
|  | reallocate(size + size_t(reserveSizeFactor*size)); | 
|  | m_size = size; | 
|  | } | 
|  |  | 
|  | void append(const Scalar& v, Index i) | 
|  | { | 
|  | Index id = static_cast<Index>(m_size); | 
|  | resize(m_size+1, 1); | 
|  | m_values[id] = v; | 
|  | m_indices[id] = i; | 
|  | } | 
|  |  | 
|  | inline size_t size() const { return m_size; } | 
|  | inline size_t allocatedSize() const { return m_allocatedSize; } | 
|  | inline void clear() { m_size = 0; } | 
|  |  | 
|  | inline Scalar& value(size_t i) { return m_values[i]; } | 
|  | inline const Scalar& value(size_t i) const { return m_values[i]; } | 
|  |  | 
|  | inline Index& index(size_t i) { return m_indices[i]; } | 
|  | inline const Index& index(size_t i) const { return m_indices[i]; } | 
|  |  | 
|  | static CompressedStorage Map(Index* indices, Scalar* values, size_t size) | 
|  | { | 
|  | CompressedStorage res; | 
|  | res.m_indices = indices; | 
|  | res.m_values = values; | 
|  | res.m_allocatedSize = res.m_size = size; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */ | 
|  | inline Index searchLowerIndex(Index key) const | 
|  | { | 
|  | return searchLowerIndex(0, m_size, key); | 
|  | } | 
|  |  | 
|  | /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */ | 
|  | inline Index searchLowerIndex(size_t start, size_t end, Index key) const | 
|  | { | 
|  | while(end>start) | 
|  | { | 
|  | size_t mid = (end+start)>>1; | 
|  | if (m_indices[mid]<key) | 
|  | start = mid+1; | 
|  | else | 
|  | end = mid; | 
|  | } | 
|  | return static_cast<Index>(start); | 
|  | } | 
|  |  | 
|  | /** \returns the stored value at index \a key | 
|  | * If the value does not exist, then the value \a defaultValue is returned without any insertion. */ | 
|  | inline Scalar at(Index key, Scalar defaultValue = Scalar(0)) const | 
|  | { | 
|  | if (m_size==0) | 
|  | return defaultValue; | 
|  | else if (key==m_indices[m_size-1]) | 
|  | return m_values[m_size-1]; | 
|  | // ^^  optimization: let's first check if it is the last coefficient | 
|  | // (very common in high level algorithms) | 
|  | const size_t id = searchLowerIndex(0,m_size-1,key); | 
|  | return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue; | 
|  | } | 
|  |  | 
|  | /** Like at(), but the search is performed in the range [start,end) */ | 
|  | inline Scalar atInRange(size_t start, size_t end, Index key, Scalar defaultValue = Scalar(0)) const | 
|  | { | 
|  | if (start>=end) | 
|  | return Scalar(0); | 
|  | else if (end>start && key==m_indices[end-1]) | 
|  | return m_values[end-1]; | 
|  | // ^^  optimization: let's first check if it is the last coefficient | 
|  | // (very common in high level algorithms) | 
|  | const size_t id = searchLowerIndex(start,end-1,key); | 
|  | return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue; | 
|  | } | 
|  |  | 
|  | /** \returns a reference to the value at index \a key | 
|  | * If the value does not exist, then the value \a defaultValue is inserted | 
|  | * such that the keys are sorted. */ | 
|  | inline Scalar& atWithInsertion(Index key, Scalar defaultValue = Scalar(0)) | 
|  | { | 
|  | size_t id = searchLowerIndex(0,m_size,key); | 
|  | if (id>=m_size || m_indices[id]!=key) | 
|  | { | 
|  | resize(m_size+1,1); | 
|  | for (size_t j=m_size-1; j>id; --j) | 
|  | { | 
|  | m_indices[j] = m_indices[j-1]; | 
|  | m_values[j] = m_values[j-1]; | 
|  | } | 
|  | m_indices[id] = key; | 
|  | m_values[id] = defaultValue; | 
|  | } | 
|  | return m_values[id]; | 
|  | } | 
|  |  | 
|  | void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision()) | 
|  | { | 
|  | size_t k = 0; | 
|  | size_t n = size(); | 
|  | for (size_t i=0; i<n; ++i) | 
|  | { | 
|  | if (!ei_isMuchSmallerThan(value(i), reference, epsilon)) | 
|  | { | 
|  | value(k) = value(i); | 
|  | index(k) = index(i); | 
|  | ++k; | 
|  | } | 
|  | } | 
|  | resize(k,0); | 
|  | } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | inline void reallocate(size_t size) | 
|  | { | 
|  | Scalar* newValues  = new Scalar[size]; | 
|  | Index* newIndices = new Index[size]; | 
|  | size_t copySize = std::min(size, m_size); | 
|  | // copy | 
|  | memcpy(newValues,  m_values,  copySize * sizeof(Scalar)); | 
|  | memcpy(newIndices, m_indices, copySize * sizeof(Index)); | 
|  | // delete old stuff | 
|  | delete[] m_values; | 
|  | delete[] m_indices; | 
|  | m_values = newValues; | 
|  | m_indices = newIndices; | 
|  | m_allocatedSize = size; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | Scalar* m_values; | 
|  | Index* m_indices; | 
|  | size_t m_size; | 
|  | size_t m_allocatedSize; | 
|  |  | 
|  | }; | 
|  |  | 
|  | #endif // EIGEN_COMPRESSED_STORAGE_H |