|  | #include <typeinfo> | 
|  | #include <Eigen/Array> | 
|  | #include "BenchTimer.h" | 
|  | using namespace Eigen; | 
|  | using namespace std; | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(const T& v) | 
|  | { | 
|  | return v.norm(); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar hypotNorm(const T& v) | 
|  | { | 
|  | return v.hypotNorm(); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar blueNorm(const T& v) | 
|  | { | 
|  | return v.blueNorm(); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v) | 
|  | { | 
|  | typedef typename T::Scalar Scalar; | 
|  | int n = v.size(); | 
|  | Scalar scale = 0; | 
|  | Scalar ssq = 1; | 
|  | for (int i=0;i<n;++i) | 
|  | { | 
|  | Scalar ax = ei_abs(v.coeff(i)); | 
|  | if (scale >= ax) | 
|  | { | 
|  | ssq += ei_abs2(ax/scale); | 
|  | } | 
|  | else | 
|  | { | 
|  | ssq = Scalar(1) + ssq * ei_abs2(scale/ax); | 
|  | scale = ax; | 
|  | } | 
|  | } | 
|  | return scale * ei_sqrt(ssq); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v) | 
|  | { | 
|  | typedef typename T::Scalar Scalar; | 
|  | Scalar s = v.cwise().abs().maxCoeff(); | 
|  | return s*(v/s).norm(); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v) | 
|  | { | 
|  | return v.stableNorm(); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v) | 
|  | { | 
|  | int n =v.size() / 2; | 
|  | for (int i=0;i<n;++i) | 
|  | v(i) = v(2*i)*v(2*i) + v(2*i+1)*v(2*i+1); | 
|  | n = n/2; | 
|  | while (n>0) | 
|  | { | 
|  | for (int i=0;i<n;++i) | 
|  | v(i) = v(2*i) + v(2*i+1); | 
|  | n = n/2; | 
|  | } | 
|  | return ei_sqrt(v(0)); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_VECTORIZE | 
|  | Packet4f ei_plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a,b); } | 
|  | Packet2d ei_plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a,b); } | 
|  |  | 
|  | Packet4f ei_pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a,b); } | 
|  | Packet2d ei_pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a,b); } | 
|  | #endif | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v) | 
|  | { | 
|  | #ifndef EIGEN_VECTORIZE | 
|  | return v.blueNorm(); | 
|  | #else | 
|  | typedef typename T::Scalar Scalar; | 
|  |  | 
|  | static int nmax = 0; | 
|  | static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr; | 
|  | int n; | 
|  |  | 
|  | if(nmax <= 0) | 
|  | { | 
|  | int nbig, ibeta, it, iemin, iemax, iexp; | 
|  | Scalar abig, eps; | 
|  |  | 
|  | nbig  = std::numeric_limits<int>::max();            // largest integer | 
|  | ibeta = std::numeric_limits<Scalar>::radix; //NumTraits<Scalar>::Base;                    // base for floating-point numbers | 
|  | it    = std::numeric_limits<Scalar>::digits; //NumTraits<Scalar>::Mantissa;                // number of base-beta digits in mantissa | 
|  | iemin = std::numeric_limits<Scalar>::min_exponent;  // minimum exponent | 
|  | iemax = std::numeric_limits<Scalar>::max_exponent;  // maximum exponent | 
|  | rbig  = std::numeric_limits<Scalar>::max();         // largest floating-point number | 
|  |  | 
|  | // Check the basic machine-dependent constants. | 
|  | if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) | 
|  | || (it<=4 && ibeta <= 3 ) || it<2) | 
|  | { | 
|  | ei_assert(false && "the algorithm cannot be guaranteed on this computer"); | 
|  | } | 
|  | iexp  = -((1-iemin)/2); | 
|  | b1    = std::pow(ibeta, iexp);  // lower boundary of midrange | 
|  | iexp  = (iemax + 1 - it)/2; | 
|  | b2    = std::pow(ibeta,iexp);   // upper boundary of midrange | 
|  |  | 
|  | iexp  = (2-iemin)/2; | 
|  | s1m   = std::pow(ibeta,iexp);   // scaling factor for lower range | 
|  | iexp  = - ((iemax+it)/2); | 
|  | s2m   = std::pow(ibeta,iexp);   // scaling factor for upper range | 
|  |  | 
|  | overfl  = rbig*s2m;          // overfow boundary for abig | 
|  | eps     = std::pow(ibeta, 1-it); | 
|  | relerr  = ei_sqrt(eps);      // tolerance for neglecting asml | 
|  | abig    = 1.0/eps - 1.0; | 
|  | if (Scalar(nbig)>abig)  nmax = abig;  // largest safe n | 
|  | else                    nmax = nbig; | 
|  | } | 
|  |  | 
|  | typedef typename ei_packet_traits<Scalar>::type Packet; | 
|  | const int ps = ei_packet_traits<Scalar>::size; | 
|  | Packet pasml = ei_pset1(Scalar(0)); | 
|  | Packet pamed = ei_pset1(Scalar(0)); | 
|  | Packet pabig = ei_pset1(Scalar(0)); | 
|  | Packet ps2m = ei_pset1(s2m); | 
|  | Packet ps1m = ei_pset1(s1m); | 
|  | Packet pb2  = ei_pset1(b2); | 
|  | Packet pb1  = ei_pset1(b1); | 
|  | for(int j=0; j<v.size(); j+=ps) | 
|  | { | 
|  | Packet ax = ei_pabs(v.template packet<Aligned>(j)); | 
|  | Packet ax_s2m = ei_pmul(ax,ps2m); | 
|  | Packet ax_s1m = ei_pmul(ax,ps1m); | 
|  | Packet maskBig = ei_plt(pb2,ax); | 
|  | Packet maskSml = ei_plt(ax,pb1); | 
|  |  | 
|  | //     Packet maskMed = ei_pand(maskSml,maskBig); | 
|  | //     Packet scale = ei_pset1(Scalar(0)); | 
|  | //     scale = ei_por(scale, ei_pand(maskBig,ps2m)); | 
|  | //     scale = ei_por(scale, ei_pand(maskSml,ps1m)); | 
|  | //     scale = ei_por(scale, ei_pandnot(ei_pset1(Scalar(1)),maskMed)); | 
|  | //     ax = ei_pmul(ax,scale); | 
|  | //     ax = ei_pmul(ax,ax); | 
|  | //     pabig = ei_padd(pabig, ei_pand(maskBig, ax)); | 
|  | //     pasml = ei_padd(pasml, ei_pand(maskSml, ax)); | 
|  | //     pamed = ei_padd(pamed, ei_pandnot(ax,maskMed)); | 
|  |  | 
|  |  | 
|  | pabig = ei_padd(pabig, ei_pand(maskBig, ei_pmul(ax_s2m,ax_s2m))); | 
|  | pasml = ei_padd(pasml, ei_pand(maskSml, ei_pmul(ax_s1m,ax_s1m))); | 
|  | pamed = ei_padd(pamed, ei_pandnot(ei_pmul(ax,ax),ei_pand(maskSml,maskBig))); | 
|  | } | 
|  | Scalar abig = ei_predux(pabig); | 
|  | Scalar asml = ei_predux(pasml); | 
|  | Scalar amed = ei_predux(pamed); | 
|  | if(abig > Scalar(0)) | 
|  | { | 
|  | abig = ei_sqrt(abig); | 
|  | if(abig > overfl) | 
|  | { | 
|  | ei_assert(false && "overflow"); | 
|  | return rbig; | 
|  | } | 
|  | if(amed > Scalar(0)) | 
|  | { | 
|  | abig = abig/s2m; | 
|  | amed = ei_sqrt(amed); | 
|  | } | 
|  | else | 
|  | { | 
|  | return abig/s2m; | 
|  | } | 
|  |  | 
|  | } | 
|  | else if(asml > Scalar(0)) | 
|  | { | 
|  | if (amed > Scalar(0)) | 
|  | { | 
|  | abig = ei_sqrt(amed); | 
|  | amed = ei_sqrt(asml) / s1m; | 
|  | } | 
|  | else | 
|  | { | 
|  | return ei_sqrt(asml)/s1m; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | return ei_sqrt(amed); | 
|  | } | 
|  | asml = std::min(abig, amed); | 
|  | abig = std::max(abig, amed); | 
|  | if(asml <= abig*relerr) | 
|  | return abig; | 
|  | else | 
|  | return abig * ei_sqrt(Scalar(1) + ei_abs2(asml/abig)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define BENCH_PERF(NRM) { \ | 
|  | Eigen::BenchTimer tf, td, tcf; tf.reset(); td.reset(); tcf.reset();\ | 
|  | for (int k=0; k<tries; ++k) { \ | 
|  | tf.start(); \ | 
|  | for (int i=0; i<iters; ++i) NRM(vf); \ | 
|  | tf.stop(); \ | 
|  | } \ | 
|  | for (int k=0; k<tries; ++k) { \ | 
|  | td.start(); \ | 
|  | for (int i=0; i<iters; ++i) NRM(vd); \ | 
|  | td.stop(); \ | 
|  | } \ | 
|  | for (int k=0; k<std::max(1,tries/3); ++k) { \ | 
|  | tcf.start(); \ | 
|  | for (int i=0; i<iters; ++i) NRM(vcf); \ | 
|  | tcf.stop(); \ | 
|  | } \ | 
|  | std::cout << #NRM << "\t" << tf.value() << "   " << td.value() <<  "    " << tcf.value() << "\n"; \ | 
|  | } | 
|  |  | 
|  | void check_accuracy(double basef, double based, int s) | 
|  | { | 
|  | double yf = basef * ei_abs(ei_random<double>()); | 
|  | double yd = based * ei_abs(ei_random<double>()); | 
|  | VectorXf vf = VectorXf::Ones(s) * yf; | 
|  | VectorXd vd = VectorXd::Ones(s) * yd; | 
|  |  | 
|  | std::cout << "reference\t" << ei_sqrt(double(s))*yf << "\t" << ei_sqrt(double(s))*yd << "\n"; | 
|  | std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\n"; | 
|  | std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\n"; | 
|  | std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n"; | 
|  | std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n"; | 
|  | std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n"; | 
|  | std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\n"; | 
|  | std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\n"; | 
|  | } | 
|  |  | 
|  | void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s) | 
|  | { | 
|  | VectorXf vf(s); | 
|  | VectorXd vd(s); | 
|  | for (int i=0; i<s; ++i) | 
|  | { | 
|  | vf[i] = ei_abs(ei_random<double>()) * std::pow(double(10), ei_random<int>(ef0,ef1)); | 
|  | vd[i] = ei_abs(ei_random<double>()) * std::pow(double(10), ei_random<int>(ed0,ed1)); | 
|  | } | 
|  |  | 
|  | //std::cout << "reference\t" << ei_sqrt(double(s))*yf << "\t" << ei_sqrt(double(s))*yd << "\n"; | 
|  | std::cout << "sqsumNorm\t"  << sqsumNorm(vf)  << "\t" << sqsumNorm(vd)  << "\t" << sqsumNorm(vf.cast<long double>()) << "\t" << sqsumNorm(vd.cast<long double>()) << "\n"; | 
|  | std::cout << "hypotNorm\t"  << hypotNorm(vf)  << "\t" << hypotNorm(vd)  << "\t" << hypotNorm(vf.cast<long double>()) << "\t" << hypotNorm(vd.cast<long double>()) << "\n"; | 
|  | std::cout << "blueNorm\t"   << blueNorm(vf)   << "\t" << blueNorm(vd)   << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; | 
|  | std::cout << "pblueNorm\t"  << pblueNorm(vf)  << "\t" << pblueNorm(vd)  << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; | 
|  | std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n"; | 
|  | std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n"; | 
|  | //   std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n"; | 
|  | } | 
|  |  | 
|  | int main(int argc, char** argv) | 
|  | { | 
|  | int tries = 10; | 
|  | int iters = 100000; | 
|  | double y = 1.1345743233455785456788e12 * ei_random<double>(); | 
|  | VectorXf v = VectorXf::Ones(1024) * y; | 
|  |  | 
|  | // return 0; | 
|  | int s = 10000; | 
|  | double basef_ok = 1.1345743233455785456788e15; | 
|  | double based_ok = 1.1345743233455785456788e95; | 
|  |  | 
|  | double basef_under = 1.1345743233455785456788e-27; | 
|  | double based_under = 1.1345743233455785456788e-303; | 
|  |  | 
|  | double basef_over = 1.1345743233455785456788e+27; | 
|  | double based_over = 1.1345743233455785456788e+302; | 
|  |  | 
|  | std::cout.precision(20); | 
|  |  | 
|  | std::cerr << "\nNo under/overflow:\n"; | 
|  | check_accuracy(basef_ok, based_ok, s); | 
|  |  | 
|  | std::cerr << "\nUnderflow:\n"; | 
|  | check_accuracy(basef_under, based_under, s); | 
|  |  | 
|  | std::cerr << "\nOverflow:\n"; | 
|  | check_accuracy(basef_over, based_over, s); | 
|  |  | 
|  | std::cerr << "\nVarying (over):\n"; | 
|  | for (int k=0; k<1; ++k) | 
|  | { | 
|  | check_accuracy_var(20,27,190,302,s); | 
|  | std::cout << "\n"; | 
|  | } | 
|  |  | 
|  | std::cerr << "\nVarying (under):\n"; | 
|  | for (int k=0; k<1; ++k) | 
|  | { | 
|  | check_accuracy_var(-27,20,-302,-190,s); | 
|  | std::cout << "\n"; | 
|  | } | 
|  |  | 
|  | std::cout.precision(4); | 
|  | std::cerr << "Performance (out of cache):\n"; | 
|  | { | 
|  | int iters = 1; | 
|  | VectorXf vf = VectorXf::Random(1024*1024*32) * y; | 
|  | VectorXd vd = VectorXd::Random(1024*1024*32) * y; | 
|  | VectorXcf vcf = VectorXcf::Random(1024*1024*32) * y; | 
|  | BENCH_PERF(sqsumNorm); | 
|  | BENCH_PERF(blueNorm); | 
|  | //     BENCH_PERF(pblueNorm); | 
|  | //     BENCH_PERF(lapackNorm); | 
|  | //     BENCH_PERF(hypotNorm); | 
|  | //     BENCH_PERF(twopassNorm); | 
|  | BENCH_PERF(bl2passNorm); | 
|  | } | 
|  |  | 
|  | std::cerr << "\nPerformance (in cache):\n"; | 
|  | { | 
|  | int iters = 100000; | 
|  | VectorXf vf = VectorXf::Random(512) * y; | 
|  | VectorXd vd = VectorXd::Random(512) * y; | 
|  | VectorXcf vcf = VectorXcf::Random(512) * y; | 
|  | BENCH_PERF(sqsumNorm); | 
|  | BENCH_PERF(blueNorm); | 
|  | //     BENCH_PERF(pblueNorm); | 
|  | //     BENCH_PERF(lapackNorm); | 
|  | //     BENCH_PERF(hypotNorm); | 
|  | //     BENCH_PERF(twopassNorm); | 
|  | BENCH_PERF(bl2passNorm); | 
|  | } | 
|  | } |