|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
|  | { | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  | Scalar alpha  = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | //   std::cerr << "axpy " << *n << " " << alpha << " " << *incx << " " << *incy << "\n"; | 
|  |  | 
|  | if(*incx==1 && *incy==1)    vector(y,*n) += alpha * vector(x,*n); | 
|  | else if(*incx>0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,*incx); | 
|  | else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,*incx); | 
|  | else if(*incx<0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,-*incx).reverse(); | 
|  | else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,-*incx).reverse(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if !ISCOMPLEX | 
|  | // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum | 
|  | // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n | 
|  | RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx) | 
|  | { | 
|  | //   std::cerr << "_asum " << *n << " " << *incx << "\n"; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  |  | 
|  | if(*n<=0) return 0; | 
|  |  | 
|  | if(*incx==1)  return vector(x,*n).cwiseAbs().sum(); | 
|  | else          return vector(x,*n,std::abs(*incx)).cwiseAbs().sum(); | 
|  | } | 
|  | #else | 
|  |  | 
|  | struct ei_scalar_norm1_op { | 
|  | typedef RealScalar result_type; | 
|  | EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_norm1_op) | 
|  | inline RealScalar operator() (const Scalar& a) const { return ei_norm1(a); } | 
|  | }; | 
|  | namespace Eigen { | 
|  | template<> struct ei_functor_traits<ei_scalar_norm1_op > | 
|  | { | 
|  | enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 }; | 
|  | }; | 
|  | } | 
|  |  | 
|  | RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx) | 
|  | { | 
|  | //   std::cerr << "__asum " << *n << " " << *incx << "\n"; | 
|  |  | 
|  | Complex* x = reinterpret_cast<Complex*>(px); | 
|  |  | 
|  | if(*n<=0) return 0; | 
|  |  | 
|  | if(*incx==1)  return vector(x,*n).unaryExpr<ei_scalar_norm1_op>().sum(); | 
|  | else          return vector(x,*n,std::abs(*incx)).unaryExpr<ei_scalar_norm1_op>().sum(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
|  | { | 
|  | //   std::cerr << "_copy " << *n << " " << *incx << " " << *incy << "\n"; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | if(*incx==1 && *incy==1)    vector(y,*n) = vector(x,*n); | 
|  | else if(*incx>0 && *incy>0) vector(y,*n,*incy) = vector(x,*n,*incx); | 
|  | else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() = vector(x,*n,*incx); | 
|  | else if(*incx<0 && *incy>0) vector(y,*n,*incy) = vector(x,*n,-*incx).reverse(); | 
|  | else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() = vector(x,*n,-*incx).reverse(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // computes a vector-vector dot product. | 
|  | Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
|  | { | 
|  | //   std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n"; | 
|  |  | 
|  | if(*n<=0) | 
|  | return 0; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | if(*incx==1 && *incy==1)    return (vector(x,*n).cwiseProduct(vector(y,*n))).sum(); | 
|  | else if(*incx>0 && *incy>0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum(); | 
|  | else if(*incx<0 && *incy>0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum(); | 
|  | else if(*incx>0 && *incy<0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum(); | 
|  | else if(*incx<0 && *incy<0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum(); | 
|  | else return 0; | 
|  | } | 
|  |  | 
|  | int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amax_)(int *n, RealScalar *px, int *incx) | 
|  | { | 
|  | //   std::cerr << "i_amax " << *n << " " << *incx << "\n"; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  |  | 
|  | if(*n<=0) | 
|  | return 0; | 
|  |  | 
|  | int ret; | 
|  |  | 
|  | if(*incx==1)  vector(x,*n).cwiseAbs().maxCoeff(&ret); | 
|  | else          vector(x,*n,std::abs(*incx)).cwiseAbs().maxCoeff(&ret); | 
|  |  | 
|  | return ret+1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  |  | 
|  | // computes a vector-vector dot product with extended precision. | 
|  | Scalar EIGEN_BLAS_FUNC(sdot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
|  | { | 
|  | // TODO | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | if(*incx==1 && *incy==1) | 
|  | return vector(x,*n).dot(vector(y,*n)); | 
|  |  | 
|  | return vector(x,*n,*incx).dot(vector(y,*n,*incy)); | 
|  | } | 
|  |  | 
|  | */ | 
|  |  | 
|  | #if ISCOMPLEX | 
|  |  | 
|  | // computes a dot product of a conjugated vector with another vector. | 
|  | void EIGEN_BLAS_FUNC(dotc)(RealScalar* dot, int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
|  | { | 
|  |  | 
|  | std::cerr << "Eigen BLAS: _dotc is not implemented yet\n"; | 
|  |  | 
|  | return; | 
|  |  | 
|  | // TODO: find how to return a complex to fortran | 
|  |  | 
|  | //   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n"; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | if(*incx==1 && *incy==1) | 
|  | *reinterpret_cast<Scalar*>(dot) = vector(x,*n).dot(vector(y,*n)); | 
|  | else | 
|  | *reinterpret_cast<Scalar*>(dot) = vector(x,*n,*incx).dot(vector(y,*n,*incy)); | 
|  | } | 
|  |  | 
|  | // computes a vector-vector dot product without complex conjugation. | 
|  | void EIGEN_BLAS_FUNC(dotu)(RealScalar* dot, int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
|  | { | 
|  | std::cerr << "Eigen BLAS: _dotu is not implemented yet\n"; | 
|  |  | 
|  | return; | 
|  |  | 
|  | // TODO: find how to return a complex to fortran | 
|  |  | 
|  | //   std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n"; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | if(*incx==1 && *incy==1) | 
|  | *reinterpret_cast<Scalar*>(dot) = (vector(x,*n).cwiseProduct(vector(y,*n))).sum(); | 
|  | else | 
|  | *reinterpret_cast<Scalar*>(dot) = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum(); | 
|  | } | 
|  |  | 
|  | #endif // ISCOMPLEX | 
|  |  | 
|  | #if !ISCOMPLEX | 
|  | // computes the Euclidean norm of a vector. | 
|  | Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx) | 
|  | { | 
|  | //   std::cerr << "_nrm2 " << *n << " " << *incx << "\n"; | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  |  | 
|  | if(*n<=0) | 
|  | return 0; | 
|  |  | 
|  | if(*incx==1)  return vector(x,*n).norm(); | 
|  | else          return vector(x,*n,std::abs(*incx)).norm(); | 
|  | } | 
|  | #else | 
|  | RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx) | 
|  | { | 
|  | //   std::cerr << "__nrm2 " << *n << " " << *incx << "\n"; | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  |  | 
|  | if(*n<=0) | 
|  | return 0; | 
|  |  | 
|  | if(*incx==1) | 
|  | return vector(x,*n).norm(); | 
|  |  | 
|  | return vector(x,*n,*incx).norm(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) | 
|  | { | 
|  | //   std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n"; | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  | Scalar c = *reinterpret_cast<Scalar*>(pc); | 
|  | Scalar s = *reinterpret_cast<Scalar*>(ps); | 
|  |  | 
|  | if(*n<=0) | 
|  | return 0; | 
|  |  | 
|  | StridedVectorType vx(vector(x,*n,std::abs(*incx))); | 
|  | StridedVectorType vy(vector(y,*n,std::abs(*incy))); | 
|  |  | 
|  | Reverse<StridedVectorType> rvx(vx); | 
|  | Reverse<StridedVectorType> rvy(vy); | 
|  |  | 
|  | if(*incx<0 && *incy>0) ei_apply_rotation_in_the_plane(rvx, vy, PlanarRotation<Scalar>(c,s)); | 
|  | else if(*incx>0 && *incy<0) ei_apply_rotation_in_the_plane(vx, rvy, PlanarRotation<Scalar>(c,s)); | 
|  | else                        ei_apply_rotation_in_the_plane(vx, vy,  PlanarRotation<Scalar>(c,s)); | 
|  |  | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps) | 
|  | { | 
|  | Scalar a = *reinterpret_cast<Scalar*>(pa); | 
|  | Scalar b = *reinterpret_cast<Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar* s = reinterpret_cast<Scalar*>(ps); | 
|  |  | 
|  | PlanarRotation<Scalar> r; | 
|  | r.makeGivens(a,b); | 
|  | *c = r.c(); | 
|  | *s = r.s(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if !ISCOMPLEX | 
|  | /* | 
|  | // performs rotation of points in the modified plane. | 
|  | int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param) | 
|  | { | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | // TODO | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // computes the modified parameters for a Givens rotation. | 
|  | int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param) | 
|  | { | 
|  | // TODO | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | */ | 
|  | #endif // !ISCOMPLEX | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx) | 
|  | { | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | //   std::cerr << "_scal " << *n << " " << alpha << " " << *incx << "\n"; | 
|  |  | 
|  | if(*n<=0) | 
|  | return 0; | 
|  |  | 
|  | if(*incx==1)  vector(x,*n) *= alpha; | 
|  | else          vector(x,*n,std::abs(*incx)) *= alpha; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if ISCOMPLEX | 
|  | int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx) | 
|  | { | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | RealScalar alpha = *palpha; | 
|  |  | 
|  | //   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n"; | 
|  |  | 
|  | if(*n<=0) | 
|  | return 0; | 
|  |  | 
|  | if(*incx==1)  vector(x,*n) *= alpha; | 
|  | else          vector(x,*n,std::abs(*incx)) *= alpha; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif // ISCOMPLEX | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) | 
|  | { | 
|  | //   std::cerr << "_swap " << *n << " " << *incx << " " << *incy << "\n"; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | if(*n<=0) | 
|  | return 0; | 
|  |  | 
|  | if(*incx==1 && *incy==1)    vector(y,*n).swap(vector(x,*n)); | 
|  | else if(*incx>0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,*incx)); | 
|  | else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,*incx)); | 
|  | else if(*incx<0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,-*incx).reverse()); | 
|  | else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,-*incx).reverse()); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  |